精英家教网 > 初中数学 > 题目详情

从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是(  )

A.(6+6)米 B.(6+3)米 C.(6+2)米 D.12米

 

A

【解析】

试题分析:在Rt△ACB中,∠CAB=45°,AB⊥DC,AB=6,

∴BC=AB=6,

在Rt△ABD中,∵tan∠BAD=

∴BD=AB•tan∠BAD=6

∴DC=CB+BD=6+6(m).

故选A.

考点:解直角三角形的应用.

 

练习册系列答案
相关习题

科目:初中数学 来源:2014年初中毕业升学考试(江苏南京卷)数学(解析版) 题型:解答题

【问题提出】

学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.

【初步思考】

我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】

第一种情况:当∠B是直角时,△ABC≌△DEF.

(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF.

第二种情况:当∠B是钝角时,△ABC≌△DEF.

(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.

第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.

(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)

(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 ,则△ABC≌△DEF.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西贺州卷)数学(解析版) 题型:填空题

分解因式: =

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西百色卷)数学(解析版) 题型:解答题

如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DEBF,1=2.

(1)求证:AED≌△CFB;

(2)若ADCD,四边形ABCD是什么特殊四边形?请说明理由.

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西百色卷)数学(解析版) 题型:填空题

如图,AB是O的直径,点C为O上一点,AOC=50°,则ABC=   

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西百色卷)数学(解析版) 题型:选择题

下列式子正确的是(  )

A.(a﹣b)2=a2﹣2ab+b2 B.(a﹣b)2=a2﹣b2

C.(a﹣b)2=a2+2ab+b2 D.(a﹣b)2=a2﹣ab+b2

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西河池卷)数学(解析版) 题型:解答题

小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:

方案代号

月租费(元)

免费时间(分)

超过免费时间的通话费(元/分)

10

0

0.20

30

80

0.15

 

(1)分别写出方案一,二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;

(2)画出(1)中两个函数的图象;

(3)若小明通话时间为200分钟左右,他应该选择哪种资费方案最省钱.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西河池卷)数学(解析版) 题型:选择题

反比例函数的图象过点(2,1),则这个函数的图象一定过点( )

A. B. C. D.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西崇左卷)数学(解析版) 题型:填空题

如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为

 

 

查看答案和解析>>

同步练习册答案