精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在AOBCOD中,OA=OBOC=ODAOB=COD=50°

求证:①AC=BD②∠APB=50°

【答案】①证明见解析;②证明见解析.

【解析】①根据已知先证明∠AOC=∠BOD,再由SAS证明△AOC≌△BOD,所以AC=BD.②由△AOC≌△BOD,可得∠OAC=∠OBD,再结合图形,利用角的和差,可得∠APB=50°.

证明:①∵∠AOB=COD=50°

∴∠AOB+BOC=COD+BOC

∴∠AOC=BOD

在△AOC和△BOD中,

AO=BO,∠AOC=BODOC=OD

∴△AOC≌△BODSAS),

AC=BD

②∵△AOC≌△BOD

∴∠OAC=OBD

∴∠OAC+AOB=OBD+∠APB

∴∠OAC+60°=OBD+APB

∴∠APB=50°

“点睛”本题考查了全等三角形的性质和判定,三角形的内角和定理的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若等腰三角形的一边长为4另一边长为8则它的周长是

A16 B20 C17 D1620

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于二次函数y=3(x﹣2)2+6,下列说法正确的是(
A.开口方向向下
B.顶点坐标为(﹣2,6)
C.对称轴为y轴
D.图象是一条抛物线

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.

(1)求该抛物线所对应的函数解析式;

(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;

(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.

①若∠APE=∠CPE,求证:=

②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).

(1)求抛物线的解析式;

(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);

(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN的值最大时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.

(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;

(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;

(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?

(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016山东潍坊第25题)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P时直线AC下方抛物线上的动点.

(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知RtABC中,∠B=90°

1)根据要求作图(尺规作图,保留作图痕迹,不写画法):

①作∠BAC的平分线ADBCD

②作线段AD的垂直平分线交ABE,交ACF,垂足为H

③连接ED

2)在(1)的基础上写出一对全等三角形:   ≌△   并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是(

A.y1<y2 B.y1>y2

C.y的最小值是﹣3 D.y的最小值是﹣4

查看答案和解析>>

同步练习册答案