分析 连结OD、OE,如图,根据切线的性质得∠ODC=∠OEC=90°,再证明四边形OECD为正方形得到CE=r,然后证明△BOE∽△BAC,利用相似比得到r:3=(4-r):4,再利用比例性质求r即可.
解答 解:连结OD、OE,如图,
∵⊙O分别与边AC、BC相切于D、E两点,
∴OD⊥AC,OE⊥BC,![]()
∴∠ODC=∠OEC=90°,
而∠C=90°,
∴四边形OECD为矩形,
而OE=OD,
∴四边形OECD为正方形,
∴CE=r,
∴BE=BC-CE=4-r,
∵OE∥AC,
∴△BOE∽△BAC,
∴OE:AC=BE:BC,即r:3=(4-r):4,
∴r=$\frac{12}{7}$.
故答案为$\frac{12}{7}$.
点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.解决本题的关键是证明CE=r.
科目:初中数学 来源: 题型:选择题
| A. | -$\frac{3}{2}$ | B. | $\frac{3}{2}$ | C. | -$\frac{2}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ac<bc | B. | a2<b2 | C. | a+1<b+1 | D. | $\frac{a}{3}$>$\frac{b}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com