精英家教网 > 初中数学 > 题目详情
1.a的倒数是-1.5,则a是(  )
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

分析 先把小数化为假分数,然后根据倒数的定义求解即可.

解答 解:∵-1.5=-$\frac{3}{2}$,-$\frac{2}{3}$的倒数为-$\frac{3}{2}$,
∴a=-$\frac{2}{3}$;
故选C.

点评 本题考查了倒数的定义:掌握a(a≠0)的倒数为$\frac{1}{a}$是本题的关键,是一道基础题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.如图,点P是函数y=$\frac{2}{x}$(x>0)图象上的一点,直线y=-$\frac{3}{4}$x+3与x轴、y轴分别交于A、B两点,过点P作x轴、y轴的垂线与该直线分别交于C、D两点,则AD•BC的值为$\frac{25}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.【定义】
若一个四边形恰好关于其中一条对角线所在的直线对称,则我们将这个四边形叫做镜面四边形.
【理解】
(1)下列说法是否正确(对的打“√”,错的打“×”).
①平行四边形是一个镜面四边形.(× )
②镜面四边形的面积等于对角线积的一半.(√ )
(2)如图(1),请你在4×4的网格(每个小正方形的边长为1)中画出一个镜面四边形,使它图(1)的顶点在格点上,且有一边长为$\sqrt{5}$.
【应用】
(3)如图(2),已知镜面四边形ABCD,∠BAD=60°,∠ABC=90°,AB≠BC,P是AD上一点,AE丄BP于E,在BP的延长线上取一点F,使EF=BE,连接AF,作∠FAD的平分线AG交BF于G,CM丄BF于M,连接CG.
①求∠EAG的度数.
②比较BM与EG的大小,并说明理由.
③若以线段CB,CG,AG为边构成的三角形是直角三角形,求cos∠CBM的值(直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.
(1)直接写出A、B、C三点的坐标和抛物线的对称轴;
(2)连接BC,与抛物线的对称轴交于点E,点M是线段OB上的一个动点,过点M作PF∥DE交线段BC于点P,交抛物线于点F,设点M坐标为(m,0),求线段PF的长(用含m的代数式表示);并求出当m为何值时,四边形PEDF为平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.$\sqrt{2}$的倒数是(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.-$\sqrt{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,在平面直角坐标系中,矩形ABCD的边BC在x轴的正半轴上,点B在点C的左侧,直线y=kx经过点A(3,3)和点P,且OP=6$\sqrt{2}$.将直线y=kx沿y轴向下平移得到直线y=kx+b,若点P落在矩形ABCD的内部,则b的取值范围是(  )
A.0<b<3B.-3<b<0C.-6<b<-3D.-3<b<3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,抛物线y=x2-4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q,与x轴交于点T.
(1)这条抛物线的对称轴是直线x=2,直线PQ与x轴所夹锐角的度数是45°;
(2)若m=2,求△POQ与△PAQ的面积比;
(3)是否存在实数m,使得点P为线段QT的中点?若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,⊙O的圆心在Rt△ABC的斜边AB上,且⊙O分别与边AC、BC相切于D、E两点,已知AC=3,BC=4,则⊙O的半径r=$\frac{12}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.先化简,再求值:已知r=100,求$\frac{2r+2}{{r}^{2}+2r+1}$+$\frac{r-1}{r+1}$+r的值.

查看答案和解析>>

同步练习册答案