精英家教网 > 初中数学 > 题目详情
6.如图,在平面直角坐标系中,矩形ABCD的边BC在x轴的正半轴上,点B在点C的左侧,直线y=kx经过点A(3,3)和点P,且OP=6$\sqrt{2}$.将直线y=kx沿y轴向下平移得到直线y=kx+b,若点P落在矩形ABCD的内部,则b的取值范围是(  )
A.0<b<3B.-3<b<0C.-6<b<-3D.-3<b<3

分析 作PE⊥AD于E交BC于F,先求出直线y=kx以及点P坐标,再确定点E、F坐标,代入y=x+b中即可解决问题.

解答 解:如图作PE⊥AD于E交BC于F,
∵直线y=kx经过点A(3,3),
∴k=1,
∴直线为y=x,设点P坐标(a,a),
∵OP=6$\sqrt{2}$,
∴a2+a2=72,
∴a2=36,
∵a>0,
∴a=6.
∴点P坐标(6,6),点E(6,3),点F(6,0),
把点E(6,3),点F(6,0)分别代入y=x+b中,得到b=-3或-6,
∴点P落在矩形ABCD的内部,
∴-6<b<-3.
故选C.

点评 本题考查一次函数有关知识,掌握两条直线平行k值相同,寻找特殊点是解决问题的关键,理解点P在平移过程中与y轴的距离保持不变,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.如图(1)所示,E为矩形ABCD的边AD上一点动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE-ED-DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:
①0<t≤5时,y=$\frac{4}{5}{t^2}$;
②当t=6秒时,△ABE≌△PQB;
③cos∠CBE=$\frac{4}{5}$;
④当t=$\frac{29}{2}$秒时,△ABE∽△QBP;
⑤线段NF所在直线的函数关系式为:y=-4x+96.
其中正确的是①②④.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,一次函数y1=x-2的图象与反比例函数y2=$\frac{k}{x}$的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC=$\frac{1}{2}$,点B的坐标为(m,n),求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做等邻边四边形.
(1)如图1,四边形ABCD中,AC平分∠BAD,∠B=∠D.求证:四边形ABCD为等邻边四边形.
(2)如图2,Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB′的方向平移,得到△A′B′C′,连接AA′、BC′,若平移后的四边形ABC′A′是等邻边四边形,且满足BC′=AB,求平移的距离.
(3)如图3,在等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC和BD为四边形对角线,△BCD为等边三角形,试探究AC和AB的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.a的倒数是-1.5,则a是(  )
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列计算正确的是(  )
A.x3•x5=x15B.x4÷x=x3C.3x2•4x2=12x2D.(x52=x7

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.若关于x的一元二次方程-x2+2ax+2-a=0的一根x1≥1,另一根x2≤-1,则抛物线y=-x2+2ax+2-a的顶点到x轴距离的最小值是$\frac{16}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.直线l1∥l2,一块含45°角的直角三角板如图所示放置,∠1=40°,则∠2=85°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.若x1,x2是方程x2-3x-1=0的两根,则x1+x2=3,x1x2=-1.

查看答案和解析>>

同步练习册答案