精英家教网 > 初中数学 > 题目详情
精英家教网已知抛物线y=-ax2+2ax+b与x轴的一个交点为A(-1,0),与y轴正半轴交于点C.
(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;
(2)当∠ACB=90°时,求抛物线的解析式;
(3)抛物线上是否存在点M,使得△ABM和△ABC的面积相等(△ABM与△ABC重合除外)?若存在,请直接写出点M坐标;若不存在,请说明理由.
(4)在第一象限内,抛物线上是否存在点N,使得△BCN的面积最大?若存在,求出这个最大值和点N坐标;若不存在,请说明理由.
分析:(1)根据对称轴公式,对称轴x=-
2a
2(-a)
=1;
(2)当点C在以AB为直径的⊙P上时,△ABC为直角三角形,已知OA=1,OB=3,由△AOC∽△COB,利用相似比可求OC,即C点坐标,设抛物线解析式的交点式,将C点坐标代入即可;
(3)根据抛物线的对称性,可知在对称轴右侧也存在这样的一个点;再根据三角形的等面积法,在x轴下侧,存在两个点,这两个点分别到x轴的距离等于点C到x轴的距离;
(4)设出点N的坐标为(m,n),过点N作ND⊥AB于点D,结合题意,用含m或n的式子表示出三角形面积,根据二次函数最值的性质即可得出面积的最大值.和此时N的值;
解答:解:(1)对称轴是:直线x=1;
点B的坐标是(3,0).(2分)

(2)由∠ACB=∠AOC=∠COB=90°得△AOC∽△COB,
AO
CO
=
CO
BO

∴CO=
3

∴b=
3

当x=-1,y=0时,-a-2a+
3
=0,
∴a=
3
3
,(4分)
∴y=-
3
3
x2+
2
3
3
x+
3


(3)点M的坐标是:(2,
3
),(1+
7
,-
3
)或(1-
7
,-
3
);(8分)

(4)设点N的坐标为(m,n),则n=-
3
3
m2+
2
3
3
m+
3
精英家教网
过点N作ND⊥AB于点D,则有:
S△BCN=S梯形ODNC+S△BDN-S△OBC
=
1
2
(
3
+n)m+
1
2
(3-m)n-
3
3
2
=
3
2
m+
3
2
n-
3
3
2
=-
3
2
m2+
3
3
2
m

=-
3
2
(m-
3
2
)2+
9
3
8
(10分)
-
3
2
<0,
∴当m=
3
2
时,△BCN的面积最大,
最大值是
9
3
8
,点N的坐标为(
3
2
5
3
4
)
(12分)
点评:本题考查了抛物线对称轴公式,抛物线对称性的运用,待定系数法求抛物线解析式的方法.综合运用了圆的对称性,直角三角形中的相似三角形的问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax+bx-4经过点A(-2,0),B(4,O)与y轴交于C点.

(1)求抛物线的解析式.
(2)若D点坐标为(0,2),P为抛物线第三象限上一动点,连PO交BD于M点,问是否存在一点P,使
OM
OP
=
2
3
?若存在,求P点坐标;不存在,请说明理由.
(3)G为抛物线第四象限上一点,OG交BC于F,求当GF:OF的比值最大时G点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线y=ax+bx-4经过点A(-2,0),B(4,O)与y轴交于C点.
作业宝
(1)求抛物线的解析式.
(2)若D点坐标为(0,2),P为抛物线第三象限上一动点,连PO交BD于M点,问是否存在一点P,使数学公式=数学公式?若存在,求P点坐标;不存在,请说明理由.
(3)G为抛物线第四象限上一点,OG交BC于F,求当GF:OF的比值最大时G点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax+bx+c与y轴交于A(0,3),与x轴分别交于B(1,0)、C(5, 0)两点.      

(1)求此抛物线的解析式;

(2)若一个动点P自OA的中点M出发先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A,求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.

查看答案和解析>>

科目:初中数学 来源:2012届辽宁省丹东七中九年级中考二模数学试卷(带解析) 题型:解答题

如图,已知抛物线y=ax+bx+c经过A(-3,0)、B(1,0)、C(0,3)三点,求:(1)抛物线解析式
(2)若抛物线的顶点为P,求∠PAC的正切值
(3)若以点A、C、P、M为顶点的四边形是平行四边形,求点M的坐标

查看答案和解析>>

科目:初中数学 来源:2011-2012学年辽宁省九年级中考二模数学试卷(解析版) 题型:解答题

如图,已知抛物线y=ax+bx+c经过A(-3,0)、B(1,0)、C(0,3)三点,求:(1)抛物线解析式

(2)若抛物线的顶点为P,求∠PAC的正切值

(3)若以点A、C、P、M为顶点的四边形是平行四边形,求点M的坐标

 

查看答案和解析>>

同步练习册答案