精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线轴交于两点(点在点的左侧),交轴于点,将直线以点为旋转中心,顺时针旋转,交轴于点,交抛物线于另一点.直线的解析式为:

是第一象限内抛物线上一点,当的面积最大时,在线段上找一点(不与重合),使的值最小,求出点的坐标,并直接写出的最小值;

如图,将沿射线方向以每秒个单位的速度平移,记平移后的,平移时间为秒,当为等腰三角形时,求的值.

【答案】(1)点的坐标为.的最小值为.2

【解析】

过点轴于点,交直线于点,过点于点.

设点的坐标为,则点的坐标为,表示出FK,,根据二次函数的性质即可求解.

连接,过点轴于点,则.的坐标为.求出点的坐标为.

,分三种情况进行讨论即可.

解:过点轴于点,交直线于点(如答图1),

过点于点.

设点的坐标为

则点的坐标为

,

,

,

,

时,有最大值.

此时点的坐标为.

是线段上一点,作轴于点于点

.

过点的垂线,交于点,此时的值最小,

此时点的坐标为.

的最小值为.

连接,过点轴于点(如答图2

.

的坐标为.

求出点的坐标为.

,

时,

,解得.

时,

,解得(舍去)

时,

,解得

综上所述,当为等腰三角形时,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在RtABC中,∠A=90°,AB=AC,点DE分别在边ABAC上,AD=AE,连接DC,点MPN分别为DEDCBC的中点.

(1)观察猜想

1中,线段PMPN的数量关系是 ,位置关系是

(2)探究证明

ADE绕点A逆时针方向旋转到图2的位置,连接MNBDCE,判断PMN的形状,并说明理由;

(3)拓展延伸

ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出PMN面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李老师是我区IDJP课题研究的主要成员之一,一天他在视频微课中提出了以下问题:如图,ABCD为圆形纸片中两条互相垂直的直径,将圆形纸片沿EF折叠,使B与圆心M重合,折痕EFAB相交于N连结AEAF.李老师提出两个猜想和一个问题,请你证明或解答出来:

①四边形MEBF是菱形;

②△AEF为等边三角形;

③求SAEFS

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】E-learning即为在线学习,是一种新型的学习方式.某网站提供了AB两种在线学习的收费方式.A种:在线学习10小时(包括10小时)以内,收取费用5元,超过10小时时,在收取5元的基础上,超过部分每小时收费0.6元(不足1小时按1小时计);B种:每月的收费金额(元)与在线学习时间是(时)之间的函数关系如图所示.

1)按照B种方式收费,当时,求关于的函数关系式.

2)如果小明三月份在这个网站在线学习,他按照A种方式支付了20元,那么在线学习的时间最多是多少小时?如果该月他按照B 种方式付费,那么他需要多付多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用次;甲、丙两车合运相同次数,运完这批货物,甲车共运吨;乙、丙两车合运相同次数,运完这批货物乙车共运吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ .(按每吨运费元计算)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx2+bx+cx轴交于点AB30),与y轴交于点C03).

1)求抛物线的解析式;

2)若点M是抛物线上在x轴下方的动点,过MMNy轴交直线BC于点N,求线段MN的最大值;

3E是抛物线对称轴上一点,F是抛物线上一点,是否存在以ABEF为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解全区5000名初中毕业生的体重情况,随机抽测了200名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.020.030.040.05,由此可估计全区初中毕业生的体重不小于60千克的学生人数约为___人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,,点是边上一个动点(不与重合),以点为圆心,为半径作与射线交于点;以点为圆心,为半径作,设

1)如图,当点与点重合时,求的值;

2)当点在线段上,如果的另一个交点在线段上时,设,试求之间的函数解析式,并写出的取值范围;

3)在点的运动的过程中,如果与线段只有一个公共点,请直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在梯形ABCD中,ADBCAB=BCDCBC,且AD=1DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q

(1)AB的长;

(2)BQ的长为时,请通过计算说明圆P与直线DC的位置关系.

查看答案和解析>>

同步练习册答案