精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,BG=5,则CF的长为__

【答案】5

【解析】首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BGFD是菱形,GF=x,AF=13-x,AC=2x,RTACF中利用勾股定理可求出x的值.

AGBD,BD=FG,
∴四边形BGFD是平行四边形,
GFBD,
CFAG,
又∵点DAC中点,
,
∴四边形BGFD是菱形,
GF=x,AF=13-x,AC=2x,
∵在RTACF, CFA=90°,
AF+CF=AC,,
解得:x=5,
BG=5.
故答案是:5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A(1,6)和点B在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.
(1)求反比例函数的表达式和点B的坐标;
(2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠BAD=60°,点M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是9,则AB的长是(
A.6
B.3
C.9
D.4.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣4,﹣2,1,8,且任意相邻四个台阶上数的和都相等.

尝试:(1)求前4个台阶上数的和是多少?

(2)求第5个台阶上的数x是多少?

应用求从下到上39个台阶上数的和.

发现试用含kk为正整数)的代数式表示出数“1”所在的台阶数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC中,∠A=90°,D是AC上一点,且∠ADB=2∠C,P是BC上任一点,PE⊥BD于点E,PF⊥AC于点F,下列结论:

①△DBC是等腰三角形;②∠C=30°;③PE+PF=AB;④PE2+AF2=BP2

其中结论正确的个数是( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是(
A.3cm2
B.4cm2
C.5cm2
D.6cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,正方形OABC的两边OA、OC分别落在x轴、y轴的正半轴上,等腰Rt△ADE的两个顶点D、E和正方形顶点B三点在一条直线上.

(1)如图1,连接OD,求证:△OAD≌△BAE;

(2)如图2,连接CD,求证:BE﹣DE=CD;

(3)如图3,当图1中的Rt△ADE的顶点D与点B重合时,点E正好落在x轴上,F为线段OC上一动点(不与O、C重合),G为线段AF的中点,若CG⊥GK交BE于点K时,请问∠KCG的大小是否变化?若不变,请求其值;若改变,求出变化的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一次函数y=kx+b的图象如图所示,则k,b的值可能为( )

A.k=3,b=3
B.k=3,b=﹣3
C.k=﹣3,b=3
D.k=﹣3,b=﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD平分∠BAC,过AD的中点O作EF⊥AD,分别交AB、AC于点E、F,连接DE、DF.
(1)判断四边形AFDE是什么四边形?请说明理由;
(2)若BD=8,CD=3,AE=4,求CF的长.

查看答案和解析>>

同步练习册答案