精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AD平分∠BAC,过AD的中点O作EF⊥AD,分别交AB、AC于点E、F,连接DE、DF.
(1)判断四边形AFDE是什么四边形?请说明理由;
(2)若BD=8,CD=3,AE=4,求CF的长.

【答案】
(1)证明:∵O是AD的中点,且EF⊥AD,

∴AE=DE,AF=DF,

∵AD平分∠BAC,

∴∠EAO=∠FAO,

∵∠EOA=∠FOA=90°,

∴∠OEA=∠OFA,

∴AE=AF,

∴AE=AF=DF=DE,

∴四边形AEDF是菱形.


(2)解:∵四边形AEDF是菱形,

∴DE∥AC.

∴△BDE∽△BCA.

=

∴AC=

∴CF=AC﹣CF=


【解析】(1)由于O是AD的中点,且EF⊥AD,所以AE=DE,AF=DF,由于AD平分∠BAC,所以∠EAO=∠FAO=90°,从易证AE=AF=DF=DE,所以四边形AEDF是菱形.(2)由DE∥AC可知△BDE∽△BCA,从而可知 ,代入数据即可求出AC的长度,从而可知CF的长度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,BG=5,则CF的长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线l1:y=x2﹣4的图象与x轴交于A,C两点,抛物线l2与l1关于x轴对称.

(1)直接写出l2所对应的函数表达式;
(2)若点B是抛物线l2上的动点(B与A,C不重合),以AC为对角线,A,B,C三点为顶点的平行四边形的第四个顶点为D,求证:D点在l2上.
(3)当点B位于l1在x轴下方的图象上,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它面积的最值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ΔABC中,CD是AB边上的高,AC=8,∠ACD=30°,tan∠ACB= ,点P为CD上一动点,当BP+CP最小时,DP=_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了测量出大楼AB的高度,从距离楼底B处50米的点C(点C与楼底B在同一水平面上)出发,沿倾斜角为30°的斜坡CD前进20米到达点D,在点D处测得楼顶A的仰角为64°,求大楼AB的高度(结果精确到1米)(参考数据:sin64°≈0.9,cos64°≈0.4,tan64°≈2.1, ≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB两地相距450千米,两地之间有一个加油站O,且AO=270千米,一辆轿车从A地出发,以每小时90千米的速度开往B地,一辆客车从B地出发,以每小时60千米的速度开往A地,两车同时出发,设出发时间为t小时.

(1)经过几小时两车相遇?

(2)当出发2小时时,轿车和客车分别距离加油站O多远?

(3)经过几小时,两车相距50千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级(1)班全体学生上周末进行体育测试的成绩(满分70分)统计如表:

成绩(分)

45

50

55

60

65

68

70

人数(人)

2

6

10

7

6

5

4

根据表中的信息判断,下列结论中错误的是(

A. 该班一共有40名同学

B. 该班学生这次测试成绩的众数是55

C. 该班学生这次测试成绩的中位数是60

D. 该班学生这次测试成绩的平均数是59

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列一元一次方程解应用题:

社会是一个重要的学校和课堂,生活是一种重要的课程和教材,实践是一种重要的学习方式和途径.参加社会生活和社会实践,不仅可以学到很多在课堂上学不到的东西,也可以把课堂上学到的理论知识同社会实践联系起来,加深对课堂学习内容的理解,我区某校七年级学生在农场进行社会实践活动时,采摘了黄瓜和茄子共80千克,了解到这些蔬菜的种植成本共180元,还了解到如下信息:

(1)求采摘的黄瓜和茄子各多少千克?

(2)这些采摘的黄瓜和茄子可赚多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,点MN把线段AB分割成AMMNBN,若以AMMNBN为边的三角形是一个直角三角形,则称点MN是线段AB的勾股分割点.

请解决下列问题:

(1)已知点MN是线段AB的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN的长;

(2)如图2,若点FMNG分别是ABADAEAC边上的中点,点DE是线段BC的勾股分割点,且EC>DE>BD,求证:点MN是线段FG的勾股分割点.

查看答案和解析>>

同步练习册答案