精英家教网 > 初中数学 > 题目详情
19.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=$\sqrt{5}$,求BC的长.

分析 首先根据三角形外角的性质可得∠B=∠BAD,根据等角对等边可得BD=AD=$\sqrt{5}$,然后利用勾股定理计算出CD长,进而可得BC长.

解答 解:∵∠B+∠DAB=∠ADC,∠ADC=2∠B,
∴∠B=∠BAD,
∴BD=AD=$\sqrt{5}$,
∵∠C=90°,
∴CD=$\sqrt{A{D}^{2}-A{C}^{2}}$=$\sqrt{5-4}$=1,
∴BC=$\sqrt{5}$+1.

点评 此题主要考查了勾股定理,以及三角形外角的性质,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.如图,小明在大楼30米高即(PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚处的俯角为60°.已知该山坡的坡度i(即tan∠ABC)为1:$\sqrt{3}$,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC,则A到BC的距离为10$\sqrt{3}$米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.有一块直角三角形的绿地,量得两直角边BC、AC分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以AC边为直角边的直角三角形,求扩充后等腰三角形绿地的面积.(图2,图3备用)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.某数的平方根为2a+3与a-15,这个数是(  )
A.121B.11C.±11D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,在四个正方形拼接成的图形中,以这十个点中任意三点为顶点,共能组成(  )个等腰直角三角形.
A.18B.22C.24D.26

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.若$\sqrt{48n}$是正整数,则最小的整数n是3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在△ABC中,AB=AC,∠ABC=∠ACB,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接BE.
(1)如图1,当点D在线段BC上,
①如果∠BAC=90°,△ABD与△ACE全等吗?并求∠BCE度数;
②如果∠BAC=100°,直接写出∠BCE的度数.
(2)设∠BAC=α,∠BCE=β.
①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;
②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请在备用图上画出图形,直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)如图(a)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是②.
(2)如图(b),在边长为1个单位长度的小正方形组成的网格中,点A、B、C都是格点.
①将△ABC向左平移6个单位长度得到得到△A1B1C1,并画出△A1B1C1
②将△A1B1C1绕点O按逆时针方向旋转90°得到△A2B2C2,请画出△A2B2C2
③将△A1B1C1绕点O旋转180°得到△A3B3C3,请画出△A3B3C3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,l1表示某品牌电动车厂一天的销售收入与电动车销售量的关系;l2表示该电动车厂一天的销售成本与销售量的关系.
(1)写出销售收入与销售量之间的函数关系式?
(2)写出销售成本与销售之间的函数关系式?
(3)当一天的销售量为多少辆时,销售收入等于销售成本?

查看答案和解析>>

同步练习册答案