精英家教网 > 初中数学 > 题目详情
(2013年四川南充3分) 如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,;③直线NH的解析式为;④若△ABE与△QBP相似,则t=秒。其中正确的结论个数为【   】
A.4B.3C.2 D.1
B。
根据图(2)可得,当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度都是1cm/秒,

∴BC=BE=5cm。∴AD=BE=5,故结论①正确。
如图1,过点P作PF⊥BC于点F,
根据面积不变时△BPQ的面积为10,可得AB=4,
∵AD∥BC,∴∠AEB=∠PBF。

∴PF=PBsin∠PBF=t。
∴当0<t≤5时,y=BQ•PF=t•t=。故结论②正确。
根据5~7秒面积不变,可得ED=2,
当点P运动到点C时,面积变为0,此时点P走过的路程为BE+ED+DC=11,故点H的坐标为(11,0)。
设直线NH的解析式为y=kx+b,
将点H(11,0),点N(7,10)代入可得:,解得:
∴直线NH的解析式为:。故结论③错误。
如图2,当△ABE与△QBP相似时,点P在DC上,

∵tan∠PBQ=tan∠ABE=,∴,即
解得:t=。故结论④正确。
综上所述,①②④正确,共3个。故选B。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示.

(1)直接写出y与x之间的函数关系式;
(2)分别求出第10天和第15天的销售金额;
(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2013年浙江义乌4分)如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l 2于点E.当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2

(1)若点B在线段AC上,且S1=S2,则B点坐标为     
(2)若点B在直线l1上,且S2=S1,则∠BOA的度数为     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:
①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;
②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;
③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=SABP;当点P与点A重合时,y=0.
其中,符合图中所示函数关系的问题情境的个数为

A.0       B.1      C.2       D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.
(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;
(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?
(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则不等式kx+b>0的解集是
A.x>3B.﹣2<x<3C.x<﹣2D.x>﹣2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若一条直线经过点(﹣1,1)和点(1,5),则这条直线与x轴的交点坐标为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲后同车前往乡镇.乙电动车的速度始终不变.设甲与学校相距y(千米),乙与学校相离y(千米),甲离开学校的时间为t(分钟).y、y与x之间的函数图象如图所示,结合图象解答下列问题:
(1)电动车的速度为   千米/分钟;
(2)甲步行所用的时间为   分;
(3)求乙返回到学校时,甲与学校相距多远?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知点A是函数y=x与y=的图象在第一象限内的交点,点B在x轴负半轴上,且OA=OB,则△AOB的面积为(     )
A.2B.C.2D.4

查看答案和解析>>

同步练习册答案