精英家教网 > 初中数学 > 题目详情
6.下列各式中$\sqrt{2},\root{3}{5},-\sqrt{3},\sqrt{-7},\sqrt{{x^2}+1}$,一定是二次根式的有(  )个.
A.2B.3C.4D.5

分析 根据二次根式的定义,可得答案.

解答 解:$\sqrt{2}$,-$\sqrt{3}$,$\sqrt{{x}^{2}+1}$一定是二次根式,
故选:B.

点评 本题考查了了二次根式的定义,二次根式的根指数是2,被开方数是非负数是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.判断下列各式是否正确,如果不正确,请举出一个反例来说明.
(1)$\sqrt{a}+\sqrt{b}=\sqrt{a+b}(a>0,b>0)$;
(2)$\frac{1}{\sqrt{a}}$$•\frac{1}{\sqrt{b}}$=$\frac{1}{\sqrt{ab}}$(a>0,b>0);
(3)$\sqrt{{a}^{2}-{b}^{2}}$=a-b(a>0,b>0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:
(1)在图①中画一条线段MN,使MN=$\sqrt{5}$;
(2)在图②中画一个△ABC,使其三边长分别为3,$\sqrt{10}$,$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.我市公共自行车项目现已建立了几百个站点,为人们的生活带来了方便.
图(1)所示的是自行车的实物图.图(2)是一辆自行车的部分几何示意图,其中车架档AC的长为45cm,且∠CAB=75°,∠CBA=50°.(参考数据:sin75°≈0.96,cos75°≈0.26,tan75°≈3.73,sin50°≈0.76,cos50°≈0.64,tan50°≈1.19)
(1)求车座固定点C到车架档AB的距离;
(2)求车架档AB的长(第2小题结果精确到1cm).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.在平面直角坐标系中,将点A(-2,1)向左平移2个单位,再向上平移3个单位到点Q,则点Q的坐标为(  )
A.(-2,3)B.(0,-2)C.(-4,4)D.(-4,-2)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图.已知直线a,b被直线c所截,且a∥b,∠1=42°,那么∠2的度数为(  )
A.42°B.48°C.52°D.132°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)解方程:(x-1)2=4
(2)解方程:$\frac{1}{8}$x3+1=0
(3)化简:|$\sqrt{3}$-$\sqrt{2}$|+|1-$\sqrt{2}$|-|3-π|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.数学课上,老师和同学们对矩形纸片进行了图形变换的以下探究活动:
(1)如图1,若连接矩形ABCD的对角线AC、BD相交于点O,则Rt△ADC可由Rt△ABC经过旋转变换得到,这种旋转变换的旋转中心是点O、旋转角度是180°;
(2)如图2,将矩形纸片ABCD沿折痕EF对折、展平.再沿折痕GC折叠,使点B落在EF上的点B′处,这样能得到∠B′GC.求∠B′GC的度数.
(3)如图3,取AD边的中点P,剪下△BPC,将△BPC沿着射线BC的方向依次进行平移变换,每次均移动BC的长度,得到了△CDE、△EFG和△GHI(如图4).若BH=BI,BC=a,则:①证明以BD、BF、BH为三边构成的新三角形的是直角三角形;②若这个新三角形面积小于50$\sqrt{15}$,请求出a的最大整数值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=$\frac{k}{x}$在第一象限的图象经过点B,若OA2-AB2=12,则k的值为(  )
A.4B.6C.8D.12

查看答案和解析>>

同步练习册答案