分析 (1)先证明△ABE∽△ADB,利用相似三角形的性质可求得AB的长;
(2)连接OA,在Rt△ABD中可求得BD,可证明△AOB为等腰三角形,结合BF=BO可证明∠OAF=90°,证得结论.
解答 (1)解:
∵AB=AC,
∴∠ABC=∠ACB=∠ADB,∠BAE=∠DAB,
∴△ABE∽△ADB,
∴$\frac{AB}{AD}$=$\frac{AE}{AB}$,
∵AE=4,DE=8,
∴AD=AE+DE=12,
∴$\frac{AB}{12}$=$\frac{4}{AB}$,解得AB=4$\sqrt{3}$;
(2)证明:
如图,连接OA,![]()
∵BD为直径,
∴△ABD为直角三角形,
在Rt△ABD中,AB=4$\sqrt{3}$,AD=12,
∴BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=$\sqrt{(4\sqrt{3})^{2}+1{2}^{2}}$=8$\sqrt{3}$,
∴AB=BO=AO,
∴∠BAO=60°,
∵BF=BO,
∴BF=AB,
∴∠BAF=∠F=$\frac{1}{2}$∠OBA=30°,
∴∠OAF=∠OAB+∠BAF=90°,
又∠ADB=$\frac{1}{2}$∠AOB,
∴直线FA与⊙O相切.
点评 本题主要考查切线的判定及相似三角形的判定和性质的应用,掌握切线的判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.
科目:初中数学 来源: 题型:选择题
| A. | 甲组加工零件数量y与时间x的关系式为y甲=40x | |
| B. | 乙组加工零件总量m=280 | |
| C. | 经过2$\frac{1}{2}$小时恰好装满第1箱 | |
| D. | 经过4$\frac{3}{4}$小时恰好装满第2箱 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ($\sqrt{3}$×4n,4n) | B. | ($\sqrt{3}$×4n-1,4n-1) | C. | ($\sqrt{3}$×4n-1,4n) | D. | ($\sqrt{3}$×4n,4n-1) |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1:2:3:4 | B. | 2:2:3:3 | C. | 2;3:2:3 | D. | 2:3:3:2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com