精英家教网 > 初中数学 > 题目详情
9.如图,长方体的底面是边长为1cm的正方形,高为3cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,请利用侧面展开图计算所用细线最短需要多少5cm.

分析 把长方体沿AB边剪开,再根据勾股定理进行解答即可.

解答 解:将长方体展开,连接A、B,
根据两点之间线段最短,AB=$\sqrt{{4}^{2}+{3}^{2}}$=5cm;
故答案为:5

点评 本题考查的是平面展开-最短路线问题,根据题意画出图形,利用数形结合求解是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,在?ABCD中,对角线AC,BD相交于点O,且OA=OB.
(1)求证:四边形ABCD是矩形;
(2)若AD=4,∠AOD=50°,求AB的长.(精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.
(1)求证:DE是⊙O的切线;
(2)当⊙O半径为3,CE=2时,求BD长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,BD为⊙O的直径,AB=AC,AD交BC于E,AE=4,ED=8.
(1)求AB的长;
(2)延长DB到F,使BF=BO,连接FA,求证:直线FA与⊙O相切.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图中,∠1与∠2是内错角的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知:如图,E、F为平行四边形ABCD对角线AC上两点,且AE=CF,连接DE、EB、BF、FD,求证:四边形DEBF为平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在?ABCD中,AC、BD相交于点O,AC=10,BD=8,CD=6,求△OAB的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在平面直角坐标系中,OA=2,OB=3,现同时将点A,B分别向上平移2个单位,再向右平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD.
(1)求点C、D的坐标及四边形ABDC的面积;
(2)若点Q在线的CD上移动(不包括C,D两点).QO与线段AB,CD所成的角∠1与∠2如图所示,给出下列两个结论:①∠1+∠2的值不变;②$\frac{∠2}{∠1}$的值不变,其中只有一个结论是正确的,请你找出这个结论,并求出这个值.
(3)在y轴正半轴上是否存在点P,使得S△CDP=S△PBO?如果有,试求出点P的坐标.

查看答案和解析>>

同步练习册答案