精英家教网 > 初中数学 > 题目详情

如图①,点A(m,0)是x轴的上一点,且|n|+数学公式=0.以OA为一边,在第四象限内作等边△OAB.C是x轴负半轴上的一动点,连接CB,在CB的上方作等边△DCB,直线DA交y轴于E点.
(1)求线段OA的长;
(2)当C点在y轴的负半轴上运动时,线段AE的长度是否发生变化?若变化,请说明理由;若不变,请证明你的结论并求出AE的长.

(3)如图②,F是点A关于y轴的对称点,作直线FE.P是直线FE上的E点上方一动点,连接PA,在PA的左侧作等边△PAT,I是∠APT与∠PAT的角平分线的交点.当点P运动时,点I是否总在y轴上运动?请判断并证明你的结论.

解:(1)∵|n|+=0,
又|n|>0,≥0,
∴m-1=0,
∴m=1,
∴A(1,0),
∴OA=1;

(2)答:AE的长度不变.
证明:∵△OAB是等边三角形,
∴BO=BA,∠OBA=60°,
又∵△BCD是等边三角形,
∴BC=BD,∠CBD=60°,
∴∠OBA=∠CBD=60°,
∴∠OBA-∠OBD=∠CBD-∠OBD,
∴∠ABD=∠OBC,
在△ABD和△OBC中,

可得△ABD≌△OBC(SAS),
∴∠ADB=∠OCB,又∠AFD=∠BFC,
可得∠DAO=∠DBC=60°,
∵EO⊥OA,即∠AOE=90°,
∴∠AEO=30°,
可得AE=2OA=2,
即当C点在x轴负半轴上运动时,AE的长度不变;

(3)答:点I总在y轴上运动.
证明:连接IA,IP,过I点作IM⊥AE,IN⊥FE,M,N分别为垂足.
易得△EFA为等边三角形,
∴∠MEN=∠FEA=60°,
∴∠MIN=120°
又∵IA,IP分别是∠TAP与∠TPA的角平分线,
可得∠AIP=120°,IA=IP
∴∠MIA=∠NIP
∴△MIA≌△NIP
∴IM=IN
∴点I在∠MEN的平分线上,
∵根据对顶角相等,∠MEI=∠OEA=∠NEI=∠OEF=30°,则y轴是∠MEN的平分线所在的直线
∴当点P运动时,点I总在y轴上运动.
分析:(1)根据被开方数不为负数,可知m-1=0,由此可得出m=1,那么A的坐标应该是A(1,0),由此即可求出OA的长度;
(2)要看AE是否会改变,只需看∠DAO的度数是否会改变,由于BC=DB,BA=OB,∠OBC=∠ABD=60°-∠OBD,因此△BOC和△BAD就全等,那么可得出∠DAB=∠BOC=120°,即∠OAD=60°,因此AE的长是不会变化的,且AE=2OA=2,由此即可解决问题;
(3)由于F,A关于y轴对称,那么y轴应该是∠FEA和它的对顶角的平分线,那么要看I是否在y轴上,只需看看I到AE,EF的距离是否相等即可,可过I分别作这两条直线的垂线设为IM,IN,那么关键是证IM=IN,可通过构建全等三角形来证明,连接PI,AI.那么关键是证三角形AIM和PIN全等,已知的有一组直角,PI=AI,只需再得出一组对应角相等即可,由于三角形EAF是等边三角形,因此∠MEN=60°,∠MIN=120°,而PI,AI都是角平分线且平分的都是60°的角,因此∠PIA=120°,那么这两个120°角都减去∠AIN后可得出∠MIA=∠PIN,由此可得出两三角形全等,那么IM=IN,因此I总在y轴上运动.
点评:本题主要考查了等边三角形的性质,全等三角形的判定等知识点,根据全等三角形得出边和角相等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、若二次函数y=ax2+bx+c的图象如图,则点(a+b,ac)在(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区模拟)已知:点A、B都在半径为9的圆O上,P是射线OA上一点,以PB为半径的圆P与圆O相交的另一个交点为C,直线OB与圆P相交的另一个交点为D,cos∠AOB=
23

(1)求:公共弦BC的长度;
(2)如图,当点D在线段OB的延长线上时,设AP=x,BD=y,求y关于x的函数解析式,并写出它的定义域;
(3)如果直线PD与射线CB相交于点E,且△BDE与△BPE相似,求线段AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南通)如图,经过点A(0,-4)的抛物线y=
1
2
x2+bx+c与x轴相交于B(-2,0),C两点,O为坐标原点.
(1)求抛物线的解析式;
(2)将抛物线y=
1
2
x2+bx+c向上平移
7
2
个单位长度,再向左平移m(m>0)个单位长度得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;
(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线l1、l2经过K(2,2)
(1)如图1,直线l2⊥l1于K.直线l1分别交x轴、y轴于A点、B点,直线l2,分别交x轴、y轴于C、D,求OB+OC的值;
(2)在第(1)问的条件下,求S△ACK-S△OCD的值:
(3)在第(2)问的条件下,如图2,点J为AK上任一点(J不于点A、K重合),过A作AE⊥DJ于E,连接EK,求∠DEK的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,这是一个五角星ABCDE,你能计算出∠A+∠B+∠C+∠D+∠E的度数吗?为什么?(必须写推理过程) 
(2)如图2,如果点B向右移动到AC上,那么还能求出∠A+∠DBE+∠C+∠D+∠E的大小吗?若能结果是多少?(可不写推理过程)
(3)如图,当点B向右移动到AC的另一侧时,上面的结论还成立吗?
(4)如图4,当点B、E移动到∠CAD的内部时,结论又如何?根据图3或图4,说明你计算的理由.

查看答案和解析>>

同步练习册答案