精英家教网 > 初中数学 > 题目详情

如图,P是等边△ABC外一点,把BP绕点B顺时针旋转60°到BP′,已知∠AP′B=150°,P′A:P′C=2:3,则PB:P′A 是


  1. A.
    数学公式:1
  2. B.
    2:1
  3. C.
    数学公式:2
  4. D.
    数学公式:1
C
分析:连接AP,根据同角的余角相等可得∠ABP=∠CBP′,然后利用“边角边”证明△ABP和△CBP′全等,根据全等三角形对应边相等可得AP=CP′,连接PP′,根据旋转的性质可得△PBP′是等边三角形,然后求出∠AP′P是直角,再利用勾股定理用PA′表示出PP′,又等腰三角形的三条边相等,代入整理即可得解.
解答:解:如图,连接AP,∵BP绕点B顺时针旋转60°到BP′,
∴BP=BP′,∠ABP+∠ABP′=60°,
又∵△ABC是等边三角形,
∴AB=BC,∠CBP′+∠ABP′=60°,
∴∠ABP=∠CBP′,
在△ABP和△CBP′中,

∴△ABP≌△CBP′(SAS),
∴AP=P′C,
∵P′A:P′C=2:3,
∴AP=P′A,
连接PP′,则△PBP′是等边三角形,
∴∠BP′P=60°,PP′=PB,
∵∠AP′B=150°,
∴∠AP′P=150°-60°=90°,
∴△APP′是直角三角形,
设P′A=x,则AP=x,
根据勾股定理,PP′===x,
则PB=x,
∴PB:P′A=x:x=:2.
故选C.
点评:本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P′A、P′C以及P′B长度转化到同一个直角三角形中是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等边三角形,AB=4cm,则BC边上的高AD等于
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,点D是线段BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交AB、AC于点F、G,连接BE.
(1)若△ABC的面积是1,则△ADE的最小面积为
3
4
3
4

(2)求证:△AEB≌ADC;
(3)探究四边形BCGE是怎样特殊的四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)直接写出∠ECF的度数等于
60
60
°;
(2)求证:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,P为△ABC内任意一点,PE∥AB,PF∥AC.那么,△PEF是什么三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D是AC的中点,F为边AB上一动点,AF=nBF,E为直线BC上一点,且∠EDF=120°.
 
(1)如图1,当n=2时,求
CE
CD
=
1
3
1
3

(2)如图2,当n=
1
3
时,求证:CD=2CE;
(3)如图3,过点D作DM⊥BC于M,当
n=3
n=3
时,C点为线段EM的中点.

查看答案和解析>>

同步练习册答案