| A. | 40cm | B. | 6cm | C. | 8cm | D. | 10cm |
分析 先利用“角角边”证明△ACD和△AED全等,根据全等三角形对应边相等可得AC=AE,CD=DE,然后求出BD+DE=AE,进而可得△DEB的周长.
解答 解:∵DE⊥AB,
∴∠C=∠AED=90°,
∵AD平分∠CAB,
∴∠CAD=∠EAD,
在△ACD和△AED中,
$\left\{\begin{array}{l}{∠C=∠AED}\\{∠CAD=∠EAD}\\{AD=AD}\end{array}\right.$,
∴△ACD≌△AED(AAS),
∴AC=AE,CD=DE,
∴BD+DE=BD+CD=BC=AC=AE,
BD+DE+BE=AE+BE=AB=6,
所以,△DEB的周长为6cm.
故选B.
点评 本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,关键是证明△ACD≌△AED.
科目:初中数学 来源: 题型:选择题
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x1=-1,x2=3 | B. | x1=-2,x2=3 | C. | x1=1,x2=-3 | D. | x1=-1,x2=-2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 40° | B. | 50° | C. | 70° | D. | 80° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 0.7×105 | B. | 0.7×106 | C. | 7×105 | D. | 7×106 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com