精英家教网 > 初中数学 > 题目详情
15.如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE•AD=AH•AF;其中结论正确的个数是(  )
A.1个B.2个C.3个D.4个

分析 由菱形ABCD中,AB=AC,易证得△ABC是等边三角形,则可得∠B=∠EAC=60°,由SAS即可证得△ABF≌△CAE;则可得∠BAF=∠ACE,利用三角形外角的性质,即可求得∠AHC=120°,由∠BAF=∠ACE,∠AEC=∠AEC,推出△AEH∽△CEA,在菱形ABCD中,AD=AB,由于△AEH∽△CEA,△ABF≌△CAE,于是△AEH∽△ABF,得到AE•AD=AH•AF.

解答 解:∵四边形ABCD是菱形,
∴AB=BC,
∵AB=AC,
∴AB=BC=AC,
即△ABC是等边三角形,
同理:△ADC是等边三角形
∴∠B=∠EAC=60°,
在△ABF和△CAE中,
$\left\{\begin{array}{l}{BF=AE}\\{∠B=∠EAC}\\{BC=AC}\end{array}\right.$,
∴△ABF≌△CAE(SAS);
故①正确;
∴∠BAF=∠ACE,
∵∠AEH=∠B+∠BCE,
∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°
故②正确;
∵∠BAF=∠ACE,∠AEC=∠AEC,
∴△AEH∽△CEA,
故③正确;
在菱形ABCD中,AD=AB,
∵△AEH∽△CEA,∴△ABF≌△CAE,
∴△AEH∽△AFB,
∴$\frac{AE}{AF}$=$\frac{AH}{AB}$,
∴$\frac{AE}{AF}$=$\frac{AH}{AD}$,
∴AE•AD=AH•AF,
故④正确,
故选D.

点评 此题考查了相似三角形的判定与性质、菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.如图,在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,那么sinA=$\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为直线x=1,点B坐标为(-1,0).则下面的四个结论:①2a+b=0;②8a+c<0;③abc>0;④当y<0时,x<-1或x>2,⑤对任意实数m,m(am+b)≤a+b.其中正确的结论有(  )个.
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解方程组:$\left\{\begin{array}{l}{\sqrt{2}x+\sqrt{3}y=3\sqrt{2}}\\{\sqrt{3}x-\sqrt{2}y=2\sqrt{3}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在菱形ABCD中,AB=4cm,∠BAD=60°,将菱形ABCD绕点D按顺时针方向作第一次旋转得到菱形A1B1C1D1,使点C落在点C1的位置,再将其绕点C1按顺时针方向作第二次旋转,使点B1落在点B2的位置…如此旋转下去,当点A2落在A3的位置时,点A在旋转过程中经过的路径长为$\frac{8+8\sqrt{3}}{3}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:如图,△ABC是⊙O内接三角形,OM⊥AB于点M,ON⊥AC于点N,连接MN,
(1)求证:MN=$\frac{1}{2}$BC;
(2)过点A作⊙O的直径AD,连接BD,AG为过点A的圆切线,过点M作MG⊥AG,垂足为G,若cos∠BAD=$\frac{4}{5}$,BD=20,求AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.直线l经过(2,3)和(-2,-1)两点,它还与x轴交于A点,与y轴交于C点,与经过原点的直线OB交于第三象限的B点,且∠ABO=30°.求:
(1)点A、C的坐标;
(2)点B的坐标.

查看答案和解析>>

科目:初中数学 来源:2017届福建省仙游县郊尾、枫亭五校教研小片区九年级下学期第一次月考数学试卷(解析版) 题型:解答题

计算:

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.(1)已知x-$\frac{1}{x}$=2,则x2+$\frac{1}{{x}^{2}}$=6.
(2)已知a2+$\frac{1}{{a}^{2}}$=4,则a-$\frac{1}{a}$=±$\sqrt{2}$.

查看答案和解析>>

同步练习册答案