【题目】如图,在中,,以斜边上的中线为直径作,分别与、交于点、.
(1)过点作,垂足为,求证:为的切线;
(2)连接,求证:.
【答案】(1)证明见解析;(2)证明见解析
【解析】
(1)连接ON,如图,根据斜边上的中线等于斜边的一半得到CD=AD=DB,则∠1=∠B,再证明∠2=∠B得到ON∥DB,接着根据平行线的性质得到ON⊥NE,然后利用切线的判定即可得到结论;
(2)连接DN,如图,根据圆周角定理得到∠CMD=∠CND=90°,则可判断四边形CMDN为矩形,所以DM=CN,然后证明CN=BN,从而得到MD=NB.
1)连接ON,如图,
∵CD为斜边AB上的中线,
∴CD=AD=DB,
∴∠1=∠B.
∵OC=ON,
∴∠1=∠2,
∴∠2=∠B,
∴ON∥DB.
∵NE⊥AB,
∴ON⊥NE,
∴NE为切线;
(2)连接DN,如图,
∵CD为直径,
∴∠CMD=∠CND=90°,
而∠MCB=90°,
∴四边形CMDN为矩形,
∴DM=CN.
∵DN⊥BC,CD=BD,
∴CN=BN,
∴MD=NB.
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,在中,,点为的中点,以为一边作正方形,点恰好与点重合,则线段与的数量关系为______________;
(2)拓展探究
在(1)的条件下,如果正方形绕点旋转,连接,线段与的数量关系有无变化?请仅就图2的情形进行说明;
(3)问题解决.
当正方形旋转到三点共线时,直接写出线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图中,,P是斜边AC上一个动点,以即为直径作交BC于点D,与AC的另一个交点E,连接DE.
(1)当时,
①若,求的度数;
②求证;
(2)当,时,
①是含存在点P,使得是等腰三角形,若存在求出所有符合条件的CP的长;
②以D为端点过P作射线DH,作点O关于DE的对称点Q恰好落在内,则CP的取值范围为________.(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正比例函数的图象与反比例函数的图象交于、两点.是第一象限内反比例函数图象上一点,过点作轴的平行线,交直线于点,连接,若的面积为,则点的坐标为_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.
(1)求反比例函数的表达式
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标
(3)求△PAB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.
(1)求点M到地面的距离;
(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:1.73,结果精确到0.01米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是矩形内的任意一点,连接、、、, 得到 , , , ,设它们的面积分别是,,,, 给出如下结论:①②③若,则④若,则点在矩形的对角线上.其中正确的结论的序号是( )
A.①②B.②③C.③④D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com