【题目】如图,一次函数y1=﹣x+5的图象与反比例函数y2= (k≠0)在第一象限的图象交于A(1,n)和B两点.
(1)求反比例函数的解析式;
(2)当y2>y1>0时,写出自变量x的取值范围.
【答案】
(1)解:∵点A(1,n)在一次函数y1=﹣x+5的图象上,
∴当x=1时,y=﹣1+5=4
即:A点的坐标为:(1,4)
∵点A(1,4)在反比例函数y2= (k≠0)的图象上
∴k=1×4=4
∴反比例函数的解析式为:y2=
(2)解:如下图所示:
解方程组: 得 或
∴B点的坐标为(4,1)
直线与x轴的交点C为(5,0)
由图象可知:当 4<x<5或0<x<1时,y2>y1>0
【解析】(1)将点A 的横坐标代入直线的解析式求出点A的坐标,然后将的A的坐标代入反比例函数的解析式即可.(2)当y2>y1>0时,双曲线便在直线的上方且在x轴的上方,所以求出直线与双曲线及x轴的交点后可由图象直接写出其对应的x取值范围.
科目:初中数学 来源: 题型:
【题目】如图,已知梯形ABCD中,ADBC,AC、BD相交于点O,AB⊥AC,AD=CD,AB=3,BC=5.求:
(1)tan∠ACD的值;
(2)梯形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进60双甲种运动鞋与50双乙种运动鞋共用10000元
运动鞋价格 | 甲 | 乙 |
进价(元/双) | m | m﹣20 |
售价(元/双) | 240 | 160 |
(1)求m的值;
(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.
(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?
(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?
(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4 ,则△CEF的周长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O的直径,C、D是半圆的三等分点,延长AC,BD交于点E.
(1)求∠E的度数;
(2)点M为BE上一点,且满足EMEB=CE2 , 连接CM,求证:CM为⊙O的切线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com