精英家教网 > 初中数学 > 题目详情

【题目】设一次函数y=kx+2k-3(k≠0),对于任意两个k的值k1,k2,分别对应两个一次函数值y1,y2,若k1k2<0,当x=m时,取相应y1,y2,中的较小值p,则p的最大值是.

【答案】-3
【解析】如图,∵y=kx+2k+3=k(x+2)-3,
∴不论k取何值,当x=-2时,y=-3,
∴一次函数y=kx+2k-3经过定点(-2,-3),
又∵对于任意两个k的值k1、k2 , k1k2<0,
∴两个一次函数y1 , y2 , 一个函数图象经过第一、二(或四)、三象限,一个经过第二、三、四象限,大致图象如图

∴当m=-2,相应的y1 , y2中的较大值p,取得最大值,最大值为-3.
所以答案是-3.
【考点精析】通过灵活运用一次函数的性质和一次函数的概念,掌握一般地,一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小;一般地,如果y=kx+b(k,b是常数,k不等于0),那么y叫做x的一次函数即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠A+∠B+∠C+∠D+∠E+∠F的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需的油费108元,驾驶新购买的纯电动汽车所需电费27元.已知行驶1千米,原来燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AD平分∠BAC,AB=AC,连结BD、CD并延长分别交AC、AB于F、E点,则此图中全等三角形的对数为(
A.2对
B.3对
C.4对
D.5对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面证明:

(1)如图1,已知直线b∥c,a⊥c,求证:a⊥b.
证明:∵a⊥c (已知)
∴∠1=(垂直定义)
∵b∥c (已知)
∴∠1=∠2 (
∴∠2=∠1=90° (
∴a⊥b (
(2)如图2:AB∥CD,∠B+∠D=180°,求证:CB∥DE.
证明:∵AB∥CD (已知)
∴∠B=
∵∠B+∠D=180° (已知)
∴∠C+∠D=180° (
∴CB∥DE (

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示:

A

B

进价(万元/套)

1.5

1.2

售价(万元/套)

1.65

1.4

该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.[毛利润=(售价﹣进价)×销售量]
(1)该商场计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学举行“感恩资助,立志成才”演讲比赛,根据初赛成绩在七,八年级分别选出10名同学参加决赛,这些选手的决赛成绩如图所示:
根据图和下表提供的信息,解答下列问题:

(1)请你把下边的表格填写完整;

成绩统计

众数

平均数

方差

七年级

85.7

39.61

八年级

85.7

27.81


(2)考虑平均数与方差,你认为哪年级的团体成绩更好些;
(3)假设在每个年级的决赛选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数与一次函数y=ax+b的图象交于点A(2,2)、B(,n).

(1)求这两个函数解析式;

(2)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数的图象有且只有一个交点,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.

(1)求证:PB是⊙O的切线;

(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为,求BC的长.

查看答案和解析>>

同步练习册答案