【题目】如图,在平面直角坐标私法中,四边形是菱形,轴,点的坐标为,,垂直于轴的直线从轴出发,沿轴正方向以每秒1个单位长度的速度向右平移,设直线与菱形的两边分别交于点(点在点的上方),连接,若的面积为,直线的运动时间为秒(),则与的函数图象大致是( )
A.B.C.D.
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,AD是△ABC的中线,AN为△ABC的外角∠CAM的平分线,CE∥AD,交AN于点E.求证:四边形ADCE是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=2,∠BAC=45°,将△ABC绕点A按顺时针方向旋转角α得到△AEF,且0°<α≤180°,连接BE,CF相交于点D.
(1)求证:BE=CF;
(2)当α=90°时,求四边形AEDC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】配餐公司为某学校提供A、B、C三类午餐供师生选择,三类午餐每份的价格分别是:A餐5元,B餐6元,C餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A、B、C三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).
请根据以上信息,解答下列问题:
(1)该校师生上周购买午餐费用的众数是 元;
(2)配餐公司上周在该校销售B餐每份的利润大约是 元;
(3)请你计算配餐公司上周在该校销售午餐约盈利多少元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:(A)和同学亲友聊天;(B)学习:(C)购物;(D)游戏;(E)其他),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):
选项 | 频数 | 频率 |
A | ||
B | ||
C | ||
D | ||
E |
根据以上信息解答下列问题:
(1)求本次参与调查的总人数.
(2)___________,___________,___________,并补全条形统计图.
(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.
(1)A、B两种奖品每件各多少元?
(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.
(Ⅰ)求证:∠A=∠EBC;
(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在5月31日世界禁烟日到来之际,某校为了提高禁烟意识,在七、八年级举办了“关爱健康,远离香烟”的知识竞赛,两个年级分别有500人为了了解本次竞赛成绩情况,现从中各随机抽取了部分同学的测试成绩x(得分均为整数,满分为100分)进行调查分析,过程如下:
第一步:收集数据
七年级:68 88 100 100 79 94 89 85 100 88 81 69 98 79 77 94 96 75 92 67
八年级:69 97 78 89 98 100 99 100 95 99 99 69 75 100 99 78 79 87 85 79
第二步:整理、描述数据
分数段 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x≤100 |
七年级人数 | 3 | 4 | 5 | 8 |
八年级人数 | 2 | 5 | 3 | 10 |
第三步:分析数据
年级 | 平均数 | 中位数 | 众数 | 满分率 | 方差 |
七年级 | 86 | 88 | 100 | 15% | 115.6 |
八年级 | 88.7 | 92 | a | 15% | 120 |
第四步:应用数据
(1)直接写出a的值和八年级抽取了多少个同学的成绩进行分析
(2)在此次测试中,七年级甲学生的成绩为89分,八年级乙学生成绩为90分,甲、乙两人的成绩在各自年级中哪一个更靠前?请说明理由.
(3)若成绩在90分至99分之间(含90分,99分)的学生为二等奖,请估计七、八年级一共获得二等奖的学生总人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;
(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com