精英家教网 > 初中数学 > 题目详情
1.已知|m+n-2|+(mn+3)2=0,求3(m+n)-2[mn+(m+n)]-3[2(m+n)-3mn]的值.

分析 根据非负数的性质:几个非负数的和等于0,则每个数等于0,求得m+n和mn的值,然后代入求解.

解答 解:根据题意得m+n-2=0且mn+3=0,
则m+n=2,mn=-3.
则原式=3×2-2×(-3+2)-3(2×2+3×3)
=6+2-3×13
=6+2-39
=-31.

点评 本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0.理解非负数的性质是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.【问题提出】
学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.二次函数y=a(x-1+k)2的对称轴是x=-4,图象与y轴的交点坐标是(0,-4),求它的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.为了了解全校2600名同学对学校设置的体操、篮球、足球、跑步、舞蹈等课外体育活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图的频数分布直方图和扇形统计图(均不完整).

(1)在这次问卷调查中,一共抽查了50名学生;
(2)补全频数分布直方图;
(3)估计该校全体同学中有1040人最喜爱篮球活动;
(4)学校准备从随机调查中喜欢跑步和喜欢舞蹈的同学中分别任选一位参加体育活动总结会,若被随机调查的同学中,喜欢跑步的男同学有3名,喜欢舞蹈的女同学有2名,请用列表或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,点A是y轴上的一点,点B与点C在x轴上且关于原点对称,若点A(0,3),点B(-4,0).
(1)在图中画出△ABC并求出△ABC三边的长;
(2)一动点P以1cm/s的速度从点B向点C运动(P点不运动到C点),设点P运动的时间为t(单位:s).
①写出△APC的面积S关于t的函数解析式,并写出自变量t的取值范围;
②当t为何值时,△APB为等腰三角形?并写出此时点P的坐标;
③当t为何值时PA与△ABC的一腰垂直?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.有这样一道题,计算(2x4-4x3y-2x2y2)-(x4-2x2y2+y3)+(-x4+4x3y-y3)的值,其中x=12016,y=-1,甲同学把“x=12016”错写为“x=-12016”,但他的计算结果是正确的,你知道这是为什么吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线EF交AB于E,交AC于F,求证:AF=$\frac{1}{3}$AC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.在实数范围内解方程$\sqrt{π-x}$+$\sqrt{x-π}$+|1-2y|=5.28,则x=π,y=2.14或-3.14.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列因式分解正确的是(  )
A.-a4+16=-(a2+4)(a2-4)B.$\frac{9}{4}$x2-x-$\frac{1}{9}$=($\frac{3}{2}$x-$\frac{1}{3}$)2
C.a4-2a+1=(a2+1)2D.9a2-1=(9a+1)(9a-1)

查看答案和解析>>

同步练习册答案