精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为6,弧DE的长度为2π.

(1)求证:DE∥BC;
(2)若AF=CE,求线段BC的长度.

【答案】
(1)

解:连接OD、OE,

设∠EOD=n°,

∵弧DE的长度为2π,

∴2π=

∴n=60°,

∴△EOD是等边三角形,

∴∠ODE=60°,

∵AB是⊙O的切线,

∴∠ODA=90°

∴∠EAD=30°,

∴∠B=∠EAD,

∴ED∥BC,


(2)

解:连接FD,

由(1)可知ED∥BC,

∴∠AED=∠C=90°,

∴由圆周角定理可知:FD是⊙O的直径,

∴∠AFD=30°,

∴cos∠AFD= ,DF=12

∴AF=8

∵cos∠AFD=

∴EF=6

∴CE=AF=8

∴AE=CF=2

∴AC=10

∵tanB=

∴BC=30,


【解析】(1)连接OD、OE,根据弧DE的长度为2π,从而可求出∠EOD的度数,根据切线的性质即可求出∠EDA的度数,从可得出∠B=∠EAD;(2)连接FD,由圆周角定理可知FD是⊙O的直径,从而可知∠AFD=30°,从而可求出AF、AE的长度,再由tanB= 即可求出BC的长度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3 ,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.
(1)求BC的长;
(2)求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上,点A,B,C表示的数分别是-6,10,12.点A以每秒3个单位长度的速度向右运动,同时线段BC以每秒1个单位长度的速度也向右运动.

(1)运动前线段AB的长度为________

(2)当运动时间为多长时,点A和线段BC的中点重合?

(3)试探究是否存在运动到某一时刻,线段AB=AC?若存在,求出所有符合条件的点A表示的数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆货车从仓库O出发在东西街道上运送水果,规定向东为正方向,一次到达的5个销售地点依次分别为A,B,C,D,E,最后回到仓库O,货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣1,﹣2,+5.请问:

(1)请以仓库O为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;

(2)试求出该货车共行驶了多少千米?

(3)如果货车运送的水果以100千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:

+50,﹣15,+25,﹣10,﹣15,则该货车运送的水果总重量是多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,则∠A、∠C、∠E、∠F满足的数量关系是(  )

A. A=∠C+∠E+∠F B. A+∠E﹣∠C﹣∠F=180°

C. A﹣∠E+∠C+∠F=90° D. A+∠E+∠C+∠F=360°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数的图像与x轴、轴分别交于点A、B,且BC∥AO,梯形AOBC的面积为10

(1)求点A、B、C的坐标;

(2)求直线AC的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E,F是对角线AC上的两点且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤SADE=SABE;⑥AF=CE这些结论中正确的是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P为四边形ABCD边上的任意一点,当∠BPC=30°时,CP的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】回答下列问题:

1)如图所示的甲、乙两个平面图形能折什么几何体?

2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f,顶点个数为v,棱数为e,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?

3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.

查看答案和解析>>

同步练习册答案