精英家教网 > 初中数学 > 题目详情

如图,已知A、B两点的坐标分别为数学公式、(0,2),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的坐标为________.

+1,+1)
分析:分P点在第一象限,P点在第四象限,由勾股定理即可求得P点的坐标.
解答:∵OB=2,OA=2
∴AB==4,
∵∠AOP=45°,
P点横纵坐标相等,可设为a,
∵∠AOB=90°,
∴AB是直径,
∴Rt△AOB外接圆的圆心为AB中点,坐标C( ,1),
P点在圆上,P点到圆心的距离为圆的半径2.
过点C作CF∥OA,过点P作PE⊥OA于E交CF于F,
∴∠CFP=90°,
∴PF=a-1,CF=a-,PC=2,
∴(a-2+(a-1)2=22,舍去不合适的根,
可得a=1+,P(1+,1+);
即P点坐标为( +1,+1).
点评:此题主要考查了圆周角定理、勾股定理、等腰直角三角形的判定和性质等知识的综合应用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知A、C两点在双曲线y=
1x
上,点C的横坐标比点A的横坐标多2,AB⊥x轴,CD⊥x轴,CE⊥AB,垂足分别是B、D、E.
(1)当A的横坐标是1时,求△AEC的面积S1
(2)当A的横坐标是n时,求△AEC的面积Sn
(3)当A的横坐标分别是1,2,…,10时,△AEC的面积相应的是S1,S2,…,S10,求S1+S2+…+S10的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•福田区二模)如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是
11
3
11
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知A、B两点的坐标分别为(2
3
,0)、(0,2),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的坐标为
3
+1,
3
+1)或(
3
-1,1-
3
3
+1,
3
+1)或(
3
-1,1-
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知M、N两点在正方形ABCD的对角线BD上移动,∠MCN为定角,连接AM、AN,并延长分别交BC、CD于E、F两点,则∠CME与∠CNF在M、N两点移动过程,它们的和是否有变化?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知E、F两点在线段BC上,AB=AC,BF=CE,你能判断线段AF和AE的大小关系吗?说明理由.

查看答案和解析>>

同步练习册答案