精英家教网 > 初中数学 > 题目详情

用两个全等三角形按不同的方法拼成四边形,在这些四边形中平行四边形的个数是

[  ]

A.1个
B.2个
C.3个
D.4个

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、如图,一个圆形街心花园,有三个出口A、B、C,每两个出口之间有一条长60米的道路,组成正三角形ABC,在中心O处有一个亭子.为使亭子与原有的道路相通,需修三条小路OD、OE、OF,使另一出口D、E、F分别落在三角形的三边上,且这三条小道把三角形分成三个全等的多边形,以备种植不同的花草,
(1)请你按以上要求设计两种不同的方案.将你的设计方案分别画在图(a)、图(b)上,并附简单的说明;
(2)要使三条小道把三角形分成三个全等的等腰梯形,应怎样设计?把方案画在图(c)上,并简单说明画法(不需证明);
(3)请你探究出一种一般方法,使得D不论在什么位置,都能准确找到另外两个出口E、F的位置,请写明这个画法.用图(d)表示出来.
(4)你在上图中探索出的一般方法是否适用于正方形?请结合图(e)予以说明;这种方法可以推广到正n边形吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

用两个全等且边长为4的等边三角形△ABC和△ACD拼成菱形ABCD.把一个60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合,将三角尺绕点A按逆时针方向旋转.
(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF的长度,你能得出什么结论?(直接写出结论,不用证明);
(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?说明理由;
(3)在上述情况中,△AEC的面积是否会等于2
3
?如果能,求BE的长;如果不能,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:用两个边长为3全等的等边三角形△ABC和△ACD拼成菱形ABCD且,把一个含60°的三角尺与这个菱形叠合;如果使三角尺60°的顶点与点A重合,两边分别与AB、AC重合.将三角尺绕A点按逆时针方向旋转(旋转角小于60°).

(1)当三角尺的两边与菱形的两边BC、CD相交于点E、F.
①BE、CF有何数量关系,并证明你的结论.
②接EF,求△CEF面积的最大值.
(2)连接BD,在旋转过程中三角尺的两边分别与BD相交于点M、N,是否存在以BM、MN、ND为边的直角三角形?若存在,求BM的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:三点一测丛书九年级数学上 题型:059

全等变换

  拿一张纸对折后,剪成两个全等的三角形,把这两个三角形一起放到图中△ABC的位置上.试一试,如果其中一个三角形不动,怎样移动另一个三角形,能够得到图中的各图形:

  通过实际操作可以知道:(1)把△ABC沿直线BC移动线段BC那样长的距离,可以变到△ECD的位置;(2)以BC为轴把△ABC翻折,可以变到△DBC的位置;(3)以点A为中心,把△ABC旋转,可以变到△AED的位置.这些图形中的两个三角形之间有这样的关系,其中一个三角形是由另一个三角形按平行移动、翻折或旋转等方法得到的,像这样按一定方法把一个图形变成另一个图形叫做图形变换.

  经过图形变换,图形的一些性质改变了,而另一些性质仍然保留下来.上面三个图形经过变换,图形的位置变化了,但形状大小都没有改变,即变换前后的图形全等,像这样只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换.

  利用图形变换,可以为研究几何图形提供方便.

试一试,你能用两个全等三角形拼成图中的各种图形吗?这些图形都可以看成是一个三角形经过全等变换得到的.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

用两个全等且边长为4的等边三角形△ABC和△ACD拼成菱形ABCD.把一个60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合,将三角尺绕点A按逆时针方向旋转.
(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF的长度,你能得出什么结论?(直接写出结论,不用证明);
(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?说明理由;
(3)在上述情况中,△AEC的面积是否会等于数学公式?如果能,求BE的长;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案