精英家教网 > 初中数学 > 题目详情
用两个全等且边长为4的等边三角形△ABC和△ACD拼成菱形ABCD.把一个60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合,将三角尺绕点A按逆时针方向旋转.
(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF的长度,你能得出什么结论?(直接写出结论,不用证明);
(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?说明理由;
(3)在上述情况中,△AEC的面积是否会等于2
3
?如果能,求BE的长;如果不能,请说明理由.
精英家教网
分析:(1)根据图形中BE、CF的长度可以直接得出BE=CF的结论,当然也可以通过证明△ABE≌△ACF得出结论.
(2)可以通过证明△ACE≌△ADF,得出结论,由AB=AC、∠B=∠ACF,再利用等式的性质可得出∠BAE=∠CAF,从而利用AAS可证得全等.
(3)首先确定△AEC的高为等边△ABC的高,为2
3
,要使△AEC的面积等于2
3
,只需使底边CE=2即可.
解答:解:(1)BE=CF.
证明:在△ABE和△ACF中,
∵∠BAE+∠EAC=∠CAF+∠EAC=60°,
∴∠BAE=∠CAF.
∵AB=AC,∠B=∠ACF=60°,
∴△ABE≌△ACF(ASA).
∴BE=CF;

(2)BE=CF仍然成立.
证明:在△ACE和△ADF中,
∵∠CAE+∠EAD=∠FAD+∠DAE=60°,
∴∠CAE=∠DAF,
∵∠BCA=∠ACD=60°,
∴∠FCE=60°,
∴∠ACE=120°,
∵∠ADC=60°,
∴∠ADF=120°,
在△ACE和△ADF中,
∠FAD=∠CAE
AC=AD
∠ADF=∠ACE

∴△ACE≌△ADF,
∴CE=DF,
∴BE=CF.

(3)能.
△AEC的CE边上的高为等边△ABC的高,为2
3

∵△AEC的面积等于2
3

∴底边CE=2,
∴BE=6.
点评:本题考查了菱形的性质、等边三角形的性质及全等三角形的判定,注意在含有三角形的图形中,线段的相等一般都会转化为三角形的全等的证明,三角形全等的判定是中考的热点,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

用两个全等的含30°角的直角三角形制作如图1所示的两种卡片,两种卡片中扇形的半径均为1,且扇形所在圆的圆心分别为长直角边的中点和30°角的顶点,按先A后B的顺序交替摆放A、B两种卡片得到图2所示的图案.若摆放这个图案共用两种卡片
8张,则这个图案中阴影部分的面积之和为
π
π
; 若摆放这个图案共用两种卡片(2n+1)张( n为正整数),则这个图案中阴影部分的面积之和为
3n+2
12
π
3n+2
12
π
.(结果保留π )

查看答案和解析>>

科目:初中数学 来源: 题型:

用两个全等的含30°角的直角三角形制作如图A、B所示的两种卡片,两种卡片中扇形的半径均为2,且扇形所在圆的圆心分别为长直角边的中点和30°角的顶点,按先A后B的顺序交替摆放A、B两种卡片得到如图所示的图案.若摆放这个图案共用两种卡片12张,则这个图案中阴影部分的面积之和为

查看答案和解析>>

科目:初中数学 来源: 题型:

用两个全等的含30°角的直角三角形,长直角边长为2.制作如图1所示的两种卡片,两种卡片中扇形的半径均为1,且扇形所在圆的圆心分别为长直角边的中点和30°角的顶点,按先A后B的顺序交替摆放A、B两种卡片得到图2所示的图案.若摆放这个图案共用两种卡片8张,则这个图案中阴影部分的之和为
π
π
.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

用两个全等且边长为4的等边三角形△ABC和△ACD拼成菱形ABCD.把一个60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合,将三角尺绕点A按逆时针方向旋转.
(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF的长度,你能得出什么结论?(直接写出结论,不用证明);
(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?说明理由;
(3)在上述情况中,△AEC的面积是否会等于数学公式?如果能,求BE的长;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案