精英家教网 > 初中数学 > 题目详情
19.如下图所示,点E在AC的延长线上,下列条件中不能判断BD∥AC(  )
A.∠3=∠4B.∠1=∠2C.∠D=∠DCED.∠D+∠ACD=180°

分析 根据平行线的判定逐个判断即可.

解答 解:A、∵∠3=∠4,
∴BD∥AC,故本选项错误;
B、根据∠1=∠2不能推出BD∥AC,故本选项正确;
C、∵∠D=∠DCE,
∴BD∥AC,故本选项错误;
D、∵∠D+∠ACD=180°,
∴BD∥AC,故本选项错误;
故答案为:B.

点评 本题考查了平行线的判定的应用,能熟记平行线的判定定理是解此题的关键,注意:平行线的判定有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.已知正方形ABCD的顶点的坐标分别为A(4,3),B(3,1),C(1,2),D(2,4),经过平移后得到正方形A1B1C1D1,若点A(2,-1),分别求出平移后B1,C1,D1对应的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,E在AB上,F在DC上,G是BC延长线上的一点:
(1)由∠B=∠1 可以判断直线AB∥CD,根据是同位角相等,两直线平行;
(2)由∠1=∠D 可以判断直线AD∥BC,根据是内错角相等,两直线平行;
(3)由∠A+∠D=180°可以判断直线AB∥CD,根据是同旁内角互补,两直线平行;
(4)由AD∥BC、EF∥BC可以判断直线AD∥EF,根据是如果两条直线都和第三条直线平行,那么这两条直线也互相平行.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,四边形ABCD向右平移一段距离后得到四边形A′B′C′D′.
(1)找出图中存在的平行且相等的四条线段;
(2)找出图中存在的四组相等的角;
(3)四边形ABCD与四边形A′B′C′D′的形状、大小相同吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.阅读下面材料:随着人们认识的不断深入,毕达哥拉斯学派逐渐承认$\sqrt{2}$不是有理数,并给出了证明.假设是$\sqrt{2}$有理数,那么存在两个互质的正整数p,q,使得$\sqrt{2}$=$\frac{p}{q}$,于是p=$\sqrt{2}$q,两边平方得p2=2q2.因为2q2是偶数,所以p2是偶数,而只有偶数的平方才是偶数,所以p也是偶数.因此可设p=2s,代入上式,得4s2=2q2,即q2=2s2,所以q也是偶数,这样,p和q都是偶数,不互质,这与假设p,q互质矛盾,这个矛盾说明,$\sqrt{2}$不能写成分数的形式,即$\sqrt{2}$不是有理数.
请你有类似的方法,证明$\root{3}{2}$不是有理数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.试估计$\sqrt{5}$的大小(  )
A.在2与3之间B.在3与4之间C.在4与5之间D.在5与6之间

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.求下列式中的x的值.
3(2x+1)2=27.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(-3,0)、B(0,-1)、C(3,0)、D(0,1).求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.在平行四边形ABCD中,AC=AB=3,过点A作AE⊥BC,垂足为点E,过点A作AF⊥直线CD,垂足为F,CF=1,则AD的长为2$\sqrt{3}$或2$\sqrt{6}$.

查看答案和解析>>

同步练习册答案