【题目】如图,数轴上A,B两点对应的有理数分别为xA=﹣5和xB=6,动点P从点A出发,以每秒1个单位的速度沿数轴在A,B之间往返运动,同时动点Q从点B出发,以每秒2个单位的速度沿数轴在B,A之间往返运动.设运动时间为t秒.
(1)当t=2时,点P对应的有理数xP=______,PQ=______;
(2)当0<t≤11时,若原点O恰好是线段PQ的中点,求t的值;
(3)我们把数轴上的整数对应的点称为“整点”,当P,Q两点第一次在整点处重合时,直接写出此整点对应的数.
【答案】(1)﹣3,5;(2)t=1或7;(3)6.
【解析】
(1)先求出P,Q对应的数,再求PQ的值;(2)结合数轴①当0<t<5.5时,点Q运动还未到点A,有AP=t,BQ=2t.此时OP=|5﹣t|,OQ=|6﹣2t|.②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,要使原点O恰好是线段PQ的中点,点Q必须位于原点O左侧;列出相应方程即可;(3)分两种情况求出t: ①当0<t<5.5时,点Q运动还未到点A,当P,Q两点重合时,P与Q相遇;②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,当P,Q两点重合时,点Q追上点P,AQ=AP.
解:(1)当t=2时,点P对应的有理数xP=﹣5+1×2=﹣3,
点Q对应的有理数xQ=6﹣2×2=2,
∴PQ=2﹣(﹣3)=5.
故答案为﹣3,5;
(2)∵xA=﹣5,xB=6,
∴OA=5,OB=6.
由题意可知,当0<t≤11时,点P运动的最远路径为数轴上从点A到点B,点Q运动的最远路径为数轴上从点B到点A并且折返回到点B.
对于点P,因为它的运动速度vP=1,点P从点A运动到点O需要5秒,运动到点B需要11秒.
对于点Q,因为它的运动速度vQ=2,点Q从点B运动到点O需要3秒,运动到点A需要5.5秒,返回到点B需要11秒.
要使原点O恰好是线段PQ的中点,需要P,Q两点分别在原点O的两侧,且OP=OQ,此时t≠5.5.
①当0<t<5.5时,点Q运动还未到点A,有AP=t,BQ=2t.
此时OP=|5﹣t|,OQ=|6﹣2t|.
∵原点O恰好是线段PQ的中点,
∴OP=OQ,
∴|5﹣t|=|6﹣2t|,
解得t=1或t=.
检验:当t=时,P,Q两点重合,且都在原点O左侧,不合题意舍去;t=1符合题意.
∴t=1;
②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,要使原点O恰好是线段PQ的中点,点Q必须位于原点O左侧,此时P,Q两点的大致位置如下图所示.
此时,OP=AP﹣OA=t﹣5,OQ=OA﹣AQ=5﹣2(t﹣5.5)=16﹣2t.
∵原点O恰好是线段PQ的中点,
∴OP=OQ,
∴t﹣5=16﹣2t,
解得t=7.
检验:当t=7时符合题意.
∴t=7.
综上可知,t=1或7;
(3)①当0<t<5.5时,点Q运动还未到点A,当P,Q两点重合时,P与Q相遇,此时需要的时间为:秒,
相遇点对应的数为﹣5+=﹣,不是整点,不合题意舍去;
②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,当P,Q两点重合时,点Q追上点P,AQ=AP,
2(t﹣5.5)=t,解得t=11,
追击点对应的数为﹣5+11=6.
故当P,Q两点第一次在整点处重合时,此整点对应的数为6.
科目:初中数学 来源: 题型:
【题目】红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是( )
A.红红不是胜就是输,所以红红胜的概率为
B.红红胜或娜娜胜的概率相等
C.两人出相同手势的概率为
D.娜娜胜的概率和两人出相同手势的概率一样
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系 中,已知点 , .若平移点 到点 ,使以点 , , , 为顶点的四边形是菱形,则正确的平移方法是( )
A.向左平移1个单位,再向下平移1个单位
B.向左平移 个单位,再向上平移1个单位
C.向右平移 个单位,再向上平移1个单位
D.向右平移1个单位,再向上平移1个单位
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正△ABO的边长为2,O为坐标原点,A在 轴上,B在第二象限。△ABO沿 轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是;翻滚2017次后AB中点M经过的路径长为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程(组)解决问题
某校初一年级组织了数学嘉年华活动,同学们踊跃参加,活动共评出三个奖项,年级购买了一些奖品进行表彰.为此,组织活动的老师设计了如下表格进行统计.
一等奖 | 二等奖 | 三等奖 | 合计 | |
获奖人数(单位:人) | 40 | |||
奖品单价(单位:元) | 4 | 3 | 2 | |
奖品金额(单位:元) | 100 |
已知获得二等奖的人数比一等奖的人数多5人.问:获利三种奖项的同学各多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实验室里,水平桌面上有甲、乙两个圆柱形容器(容器足够高),底面半径之比为1∶2,用一个管子在甲、乙两个容器的15厘米高度处连通(即管子底端离容器底15厘米).已知只有乙容器中有水,水位高2厘米,如图所示.现同时向甲、乙两个容器注水,平均每分钟注入乙容器的水量是注入甲容器水量的k倍.开始注水1分钟,甲容器的水位上升a厘米,且比乙容器的水位低1厘米.其中a,k均为正整数,当甲、乙两个容器的水位都到达连通管子的位置时,停止注水.甲容器的水位有2次比乙容器的水位高1厘米,设注水时间为t分钟.
(1)求k的值(用含a的代数式表示).
(2)当甲容器的水位第一次比乙容器的水位高1厘米时,求t的值.
(3)当甲容器的水位第二次比乙容器的水位高1厘米时,求a,k,t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知A(-1,5),B(4,2),C(-1,0)三点.
(1)点A的对称点A′的坐标为(1,-5),点B关于x轴的对称点B′的坐标为________,点C关于y轴的对称点C′的坐标为________;
(2)求(1)中的△A′B′C′的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,AC=BC,∠ACB=90o,D为AB的中点,E为线段AD上一点,过E点的线段FG交CD的延长线于点G,交AC于点F,且,分别延长、交于点H,若EH平分∠AEG,HD平分∠CHG。则下列说法:①∠GDH=45o;②GD=ED; ③EF=2DM; ④CG=2DE+AE,正确的是_________________ (填番号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知某开发区有一块四边形的空地,如图所示,现计划在空地上种植草皮,经测量,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com