精英家教网 > 初中数学 > 题目详情
17.计算:
(1)-(a42
(2)-p3•[(-p)2]3
(3)(x2n-(xn2
(4)5(p34•(-p23+2[(-p)2]4•(-p52

分析 根据整式运算的法则即可求出答案.

解答 解:(1)原式=-a8
(2)原式=-p3•p6=-p9
(3)原式=x2n-x2n=0,
(4)原式=-5p12•p6+2p8p10=-5p18+2p18=-3p18

点评 本题考查学生的计算能力,解题的关键是幂的乘方公式以及同底数幂的乘法公式,本题属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.解方程:
(1)4(x-5)=x+1;           
(2)$\frac{2x+1}{3}$=$\frac{x-1}{4}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,抛物线y=ax2+$\frac{3}{2}$x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(-1,0),点C的坐标为(0,2).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在平面直角坐标系中,抛物线y=-x2+2bx+c与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)
(1)当B(-4,0)时,求抛物线的解析式;
(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;
(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心,$\frac{1}{2}$OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.平行四边形ABCD中,AB=4,BC=9,延长BA到E,使AE=2,F在直线AD上,且DF=3,直线EF与直线AC交于点P,则$\frac{PA}{PC}$=$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.设m为整数,mx2-(m+2)x+2=0的根为整数,则m的值为±1,±2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知x+5$\sqrt{xy}$-6y=0(x>0,y>0),则$\frac{3x-\sqrt{xy}+y}{5x+3\sqrt{xy}-4y}$的值为$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.用大小相等的小正方形(阴影部分)按一定规律拼成下列图形,拼成第1个图形需要2个小正方形,拼第2个图形需要6个小正方形,拼第3个图形要12个小正方形…那么第5个图形中需要小正方形30个,第n个图形中需要小正方形n(n+1)个.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若4sin2A-4sinAcosA+cos2A=0,则tanA=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案