精英家教网 > 初中数学 > 题目详情

【题目】如图,直线ABCD,EF分别交AB、CDG、F两点,射线FM平分∠EFD,将射线FM平移,使得端点F与点G重合且得到射线GN.若∠EFC=110°,则∠AGN的度数是(  )

A. 120° B. 125° C. 135° D. 145°

【答案】D

【解析】

先根据邻补角的定义可求得∠EFD=70°,再根据角平分线的定义求得∠EFM=35°,由平移的性质可得GN//FM,继而可得∠EGN=EFM=35°,再根据AB//CD,可得∠AGE=EFC=110°,再由∠AGN=AGE+EGN即可得解.

∵∠EFC=110°,EFC+EFD=180°,

∴∠EFD=70°,

FM平分∠EFD,

∴∠EFM=35°,

∵将射线FM平移,使得端点F与点G重合且得到射线GN,

GN//FM,

∴∠EGN=EFM=35°,

AB//CD,

∴∠AGE=EFC=110°,

∴∠AGN=AGE+EGN=110°+35°=145°,

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD的边长为2,E为BC边的延长线上一点,CE=2,联结AE,与CD交于点F,联结BF并延长与线段DE交于点G,则BG的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1.
(1)求m,n的值;
(2)x取什么值时,y随x的增大而减小?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,直径AB交弦CD于点G,CG=DG,⊙O的切线BE交DO的延长线于点E,F是DE与⊙O的交点,连接BD,BF.
(1)求证:∠CDE=∠E;
(2)若OD=4,EF=1,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE=BAC,连接CE.

(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=  度;

(2)设∠BAC=α,BCE=β.

①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;

②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.

(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.

(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知ABCD,点E、F分别是AB、CD上的点,点P是两平行线之间的一点,设∠AEP=α,PFC=β,在图①中,过点E作射线EHCD于点N,作射线FI,延长PFG,使得PE、FG分别平分∠AEH、DFl,得到图②

(1)在图①中,过点PPMAB,当α=20°,β=50°时,∠EPM=   度,∠EPF=   度;

(2)在(1)的条件下,求图②中∠END与∠CFI的度数;

(3)在图②中,当FIEH时,请直接写出αβ的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点,过点B作BE∥AD,交⊙O于点E,连接ED.
(1)求证:ED∥AC;
(2)连接AE,试证明:ABCD=AEAC.

查看答案和解析>>

同步练习册答案