精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1.
(1)求m,n的值;
(2)x取什么值时,y随x的增大而减小?

【答案】解:(1)∵二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1,
∴有,解得
∴二次函数的解析式为y=x2+2x﹣2.
(2)∵a=1>0,
∴抛物线的开口向上,当x≤﹣1时,函数递减;当x>﹣1时,函数递增.
故当x≤﹣1时,y随x的增大而减小.
【解析】(1)根据二次函数过点P和二次函数的对称轴为x=﹣1,可得出关于m、n的二元一次方程组,解方程组即可得出m、n的值;
(2)由二次函数的a的值大于0,结合函数的单调性,即可得出结论.
【考点精析】通过灵活运用二次函数的性质,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中, 厘米, 厘米,点DAB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为_______ 厘米/秒时,能够在某一时刻使BPDCQP全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的.连接BE、CF相交于点D.

(1)求证:BE=CF.

(2)当四边形ACDE为菱形时,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在三角形ABC中,点D在线段AB上,DEBCAC于点E,点F在直线BC上,作直线EF,过点D作直线DHAC交直线EF于点H.

(1)在如图1所示的情况下,求证:HDE=C;

(2)若三角形ABC不变,D,E两点的位置也不变,点F在直线BC上运动.

①当点H在三角形ABC内部时,直接写出∠DHF与∠FEC的数量关系;

②当点H在三角形ABC外部时,①中结论是否依然成立?请在图2中画图探究,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法:

①两点确定一条直线;

②两点之间,线段最短;

③若∠AOCAOB,则射线OC是∠AOB的平分线;

④连接两点之间的线段叫做这两点间的距离;

⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上.

其中正确的有________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰ABC中,AB=AC,BAC=50°BAC的平分线与线段AB的中垂线交于点O,点C沿EF折叠后与点O重合,则AOF的度数是(

A.105° B.110° C.115° D.120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,锐角△ABC中,边BC长为3,高AH长为2,矩形EFMN的边MN在BC边上,其余两个顶点E,F分别在AB,AC边上,EF交AH于点G.
(1)求的值;
(2)当EN为何值时,矩形EFMN的面积为△ABC面积的四分之一.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD,EF分别交AB、CDG、F两点,射线FM平分∠EFD,将射线FM平移,使得端点F与点G重合且得到射线GN.若∠EFC=110°,则∠AGN的度数是(  )

A. 120° B. 125° C. 135° D. 145°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B、C是数轴上的三点,O是原点,BO=3,AB=2BO,5AO=3CO.

(1)写出数轴上点A、C表示的数;

(2)P、Q分别从A、C同时出发,P以每秒2个单位长度的速度沿数轴向右匀速运动,Q以每秒6个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,N在线段CQ,CN=CQ.设运动的时间为t(t>0).

数轴上点M、N表示的数分别是    (用含t的式子表示);

t为何值时,M、N两点到原点的距离相等?

查看答案和解析>>

同步练习册答案