【题目】抛物线y=ax2+bx+c的对称轴为直线x=﹣1,图象过(1,0)点,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有( )
A. 2B. 3C. 4D. 5
【答案】B
【解析】
根据抛物线的开口方向可确定a的符号,再结合对称轴可确定b的符号,与y轴的交点可确定c的符号,由此可对①进行判断;由抛物线与x轴交点的个数判定②;根据x=-3时,二次函数的值对③进行判断;根据抛物线的性质可判断④;结合b、c和a的数量关系代入可判断⑤.
∵抛物线开口向上,与y轴交点在x轴下方,
∴a>0,c<0,
∵抛物线对称轴x=﹣1,经过(1,0),
∴﹣=﹣1,a+b+c=0,
∴b=2a,c=﹣3a,
∴b>0,
∴abc<0,故①错误;
∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,故②正确,
∵抛物线对称轴x=﹣1,经过(1,0),
∴抛物线与x轴的另一个交点为(﹣3,0),
∴9a﹣3b+c=0,故③正确,
∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,
﹣1.5>﹣2,
则y1<y2,故④错误;
∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,
故选B.
科目:初中数学 来源: 题型:
【题目】如图,在口ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.
(1)求证:△ABF≌△EDA;
(2)延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.
解答下列问题:
(1)这次抽样调查的样本容量是 ,并补全频数分布直方图;
(2)C组学生的频率为 ,在扇形统计图中D组的圆心角是 度;
(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】广安市红色旅游资源丰富,无论是小平故里行,还是华蓥山上游,都吸引了不少游客。2014~2018年旅游收入不断增长,同比增速分别为:17.3%,14.7%,17.3%,16.5%,19.1%,关于这组数据,下列说法正确的是( ).
A. 中位数是14.7%B. 众数是17.3%
C. 平均数是17.98%D. 方差是0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+1(a≠0,a为实数)的图象过点A(-2,2),一次函数y=kx+b(k≠0,k、b为实数)的图象l经过点B(0,2).
(1)求a的值并写出二次函数表达式;
(2)求b的值;
(3)设直线l与二次函数图象交于M、N两点,过M作MC垂直x轴于点C,试证明:MB=MC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.
(1)求证:EM是⊙O的切线;
(2)若∠A=∠E,BC=,求阴影部分的面积.(结果保留和根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,给出如下定义:已知两个函数,如果对于任意的自变量x,这两个函数对应的函数值记为y1、y2,恒有点x,y1和点x,y2关于点x,x成中心对称(此三个点可以重合),由于对称中心x,x都在直线yx上,所以称这两个函数为关于直线yx的“相依函数”.例如:y3x和y5x为关于直线yx的“相依函数”
(1)已知点M1,m是直线y2x4上一点,请求出点M1,m关于点1,1成中心对称的点N的坐标;
(2)若直线y3xn和它关于直线yx的“相依函数”的图象与y轴围成的三角形的面积为8,求n的值;
(3)若二次函数yax2bxc和yx2d为关于直线yx的“相依函数”.
①请求出a、b的值;
②已知点P3,2、点Q2,2,连接PQ,直接写出yax2bxc和yx2d两条抛物线与线段PQ有且只有两个交点时对应的d的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.
(1)初三(1)班接受调查的同学共有多少名;
(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;
(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A,B两点的纵坐标分别为7和1,直线AB与y轴所夹锐角为60°.
(1)求线段AB的长;
(2)求经过A,B两点的反比例函数的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com