精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,给出如下定义:已知两个函数,如果对于任意的自变量x,这两个函数对应的函数值记为y1y2,恒有点x,y1和点x,y2关于点x,x成中心对称(此三个点可以重合),由于对称中心x,x都在直线yx上,所以称这两个函数为关于直线yx的“相依函数”.例如:y3xy5x为关于直线yx的“相依函数”

1)已知点M1,m是直线y2x4上一点,请求出点M1,m关于点1,1成中心对称的点N的坐标;

2)若直线y3xn和它关于直线yx的“相依函数”的图象与y轴围成的三角形的面积为8,求n的值;

3)若二次函数yax2bxcyx2d为关于直线yx的“相依函数”.

①请求出ab的值;

②已知点P3,2、点Q2,2,连接PQ,直接写出yax2bxcyx2d两条抛物线与线段PQ有且只有两个交点时对应的d的取值范围.

【答案】(1)M (1,6), N (1,4);(2)n 4;(3)①,②1 d 2或 7 d 2

【解析】

1)先把M坐标代入直线y2x4,求出m的值,再根据与点1,1成中心对称即可求出N的坐标;2)根据相依函数的定义得,求得依函数解析式为: yxn,联立两函数求出交点的横坐标,再利用y轴围成的三角形的面积为8,得出式子求出n;(3)①由题意得,即,恒成立,即可求出a,b的值,②根据题意作出图像,再根据图像进行判断.

解:(1)把M坐标代入直线y2x4,得m=6

M,N关于(1,1)成中心对称,故N1-4

2,可得相依函数解析式为: y x n

;解得:

,解得: n 4

3)①,可得:,对于任意的 x 要恒成立,

,

, 当 3 x 2 的图象如图

综上图象可知: 1 d 2或 7 d 2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】两个反比例函数在第一象限内的图象如图所示,点P的图象上,PC轴于点C,交的图象于点APC轴于点D,交的图象于点B. 当点P的图象上运动时,以下结论:

的值不会发生变化

PAPB始终相等

④当点APC的中点时,点B一定是PD的中点.

其中一定不正确的是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物线yax2+bx+c的对称轴为直线x1,且过点(30),下列结论:abc0ab+c0③2a+b0b24ac0;正确的有(  )个.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yax2+bx+c的对称轴为直线x=﹣1,图象过(10)点,部分图象如图所示,下列判断中:abc0b24ac09a3b+c0若点(﹣0.5y1),(﹣2y2)均在抛物线上,则y1y25a2b+c0.其中正确的个数有(  )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+2x轴相交于A(﹣1,0),B(4,0)两点,与y轴相交于点C.

(1)求抛物线的解析式;

(2)将△ABCAB中点M旋转180°,得到△BAD.

①求点D的坐标;

②判断四边形ADBC的形状,并说明理由;

(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在方格纸中位置如图所示

1)请在方格纸上建立平面直角坐标系,使得AB两点的坐标分别为A2,﹣1)、B1,﹣4),并求出C点的坐标;

2)作出△ABC关于横轴对称的△A1B1C1,再作出△ABC以坐标原点为旋转中心、旋转180°后的△A2B2C2,并写C1C2两点的坐标;

3)观察△A1B1C1和△A2B2C2,其中的一个三角形能否由另一个三角形经过某种变换而得到?若能,请指出什么变换.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.

(1)求该抛物线的函数关系式;

(2)当△ADP是直角三角形时,求点P的坐标;

(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,将抛物线向右平移2个单位得到抛物线,且平移后的抛物线经过点

求平移后抛物线的表达式;

设原抛物线与y轴的交点为B,顶点为P,平移后的新抛物线的对称轴与x轴交于点M,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.

(1)直接写出A、B、C三点的坐标和抛物线的对称轴;

(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PFDE交抛物线于点F,设点P的横坐标为m;

①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?

②设BCF的面积为S,求S与m的函数关系式.

查看答案和解析>>

同步练习册答案