精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.

(1)求该抛物线的函数关系式;

(2)当△ADP是直角三角形时,求点P的坐标;

(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

【答案】(1) y=x2﹣4x+3;(2) P1(1,0),P2(2,﹣1);(3) F1(2﹣,1),F2(2+,1).

【解析】试题分析(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;
(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:
①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;
②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P点的坐标;
(3)很显然当P、B重合时,不能构成以A、P、E、F为顶点的四边形,因为点P、F都在抛物线上,且点P为抛物线的顶点,所以PF与x轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F点的坐标.

试题解析:(1)∵抛物线的顶点为Q(2,﹣1),

∴设抛物线的解析式为y=a(x﹣2)2﹣1,

C(0,3)代入上式,得:

3=a(0﹣2)2﹣1,a=1;

∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;

(2)分两种情况:

①当点P1为直角顶点时,点P1与点B重合;

y=0,得x2﹣4x+3=0,解得x1=1,x2=3;

∵点A在点B的右边,

∴B(1,0),A(3,0);

∴P1(1,0);

②当点A为△AP2D2的直角顶点时;

∵OA=OC,∠AOC=90°,

∴∠OAD2=45°;

当∠D2AP2=90°时,∠OAP2=45°,

∴AO平分∠D2AP2

又∵P2D2∥y轴,

∴P2D2⊥AO,

∴P2、D2关于x轴对称;

设直线AC的函数关系式为y=kx+b(k≠0).

A(3,0),C(0,3)代入上式得:

解得

∴y=﹣x+3;

D2(x,﹣x+3),P2(x,x2﹣4x+3),

则有:(﹣x+3)+(x2﹣4x+3)=0,

x2﹣5x+6=0;

解得x1=2,x2=3(舍去);

∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;

∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).

∴P点坐标为P1(1,0),P2(2,﹣1);

(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;

当点P的坐标为P2(2,﹣1)(即顶点Q)时,

平移直线APx轴于点E,交抛物线于F;

∵P(2,﹣1),

∴可设F(x,1);

∴x2﹣4x+3=1,

解得x1=2﹣,x2=2+

∴符合条件的F点有两个,

F1(2﹣,1),F2(2+,1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】P是菱形ABCD的对角线AC上的一个动点,已知AB=1,∠ADC=120°, MN分别是ABBC边上的中点,则MPN的周长最小值是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某年5月,我国南方某省AB两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市CD获知AB两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往AB两市.已知从C市运往AB两市的费用分别为每吨20元和25元,从D市运往往AB两市的费用分别为每吨15元和30元,设从C市运往B市的救灾物资为x吨.

1)请填写下表;

A

B

合计(吨)

C

   

x

240

D

   

   

260

总计(吨)

200

300

500

2)设CD两市的总运费为W元,求Wx之间的函数关系式,并写出自变量x的取值范围;

3)经过抢修,从C市到B市的路况得到了改善,缩短了运输时间,运费每吨减少n元(N0),其余路线运费不变,若CD两市的总运费的最小值不小于10080元,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某国际化学校实行小班制教学,七年级四个班共有学生(6m-3n)人,一班有学生m人,二班人数比一班人数的两倍少n人,三班人数比二班人数的一半多12人.

1求三班的学生人数(用含m.n的式子表示);

2求四班的学生人数;(用含m.n的式子表示);

3若四个班共有学生120,求二班比三班多的学生人数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.

(1)证明:BE=CF.

(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.

(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图直线y2x+my(n0)交于AB两点,且点A的坐标为(14)

(1)求此直线和双曲线的表达式;

(2)x轴上一点M作平行于y轴的直线1,分别与直线y2x+m和双曲线y(n0)交于点PQ,如果PQ2QM,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系xOy中,已知点A03)、点B30),一次函数y2x的图象与直线AB交于点M

1)求直线AB的函数解析式及M点的坐标;

2)若点Nx轴上一点,且△MNB的面积为6,求点N的坐标.

查看答案和解析>>

同步练习册答案