【题目】如图,抛物线y=ax2+bx+2与x轴相交于A(﹣1,0),B(4,0)两点,与y轴相交于点C.
(1)求抛物线的解析式;
(2)将△ABC绕AB中点M旋转180°,得到△BAD.
①求点D的坐标;
②判断四边形ADBC的形状,并说明理由;
(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2+x+2;(2)①点D的坐标为(3,﹣2),②四边形ADBC为矩形,理由见解析;(3)在该抛物线对称轴上存在点P,使△BMP与△BAD相似,点P的坐标为(,)或(,﹣)或(,5)或(,﹣5).
【解析】
(1)由点A、B的坐标,利用待定系数法即可求出抛物线的解析式;
(2)利用二次函数图象上点的坐标特征可求出点C的坐标.①过点D作DE⊥x轴于点E,根据旋转的性质可得出OA=EB、OC=ED,结合点A、B、O、C的坐标,即可找出点D的坐标;②由点A、B、C的坐标可得出OA、OC、OB的长度,利用勾股定理可求出AC、BC的长,由AC2+BC2=25=AB2可得出∠ACB=90°,再利用旋转的性质即可找出四边形ADBC为矩形;
(3)假设存在,设点P的坐标为(,m),由点M为AB的中点可得出∠BPD=∠ADB=90°,分△PMB∽△BDA及△BMP∽△BDA两种情况考虑,利用相似三角形的性质可得出关于m的含绝对值的一元一次方程,解之即可得出结论.
(1)将A(﹣1,0)、B(4,0)代入y=ax2+bx+2,得:,解得:,
∴抛物线的解析式为y=﹣x2+x+2.
(2)当x=0时,y=﹣x2+x+2=2,
∴点C的坐标为(0,2).
①过点D作DE⊥x轴于点E,如图1所示.
∵将△ABC绕AB中点M旋转180°,得到△BAD,
∴OA=EB,OC=ED.
∵A(﹣1,0),O(0,0),C(0,2),B(4,0),
∴BE=1,DE=2,OE=3,
∴点D的坐标为(3,﹣2).
②四边形ADBC为矩形,理由如下:
∵A(﹣1,0),B(4,0),C(0,2),
∴OA=1,OC=2,OB=4,AB=5,
∴AC=,BC=.
∵AC2+BC2=25=AB2,
∴∠ACB=90°.
∵将△ABC绕AB中点M旋转180°,得到△BAD,
∴∠ABC=∠BAD,BC=AD,
∴BC∥AD且BC=AD,
∴四边形ADBC为平行四边形.
又∵∠ACB=90°,
∴四边形ADBC为矩形.
(3)假设存在,设点P的坐标为(,m).
∵点M为AB的中点,
∴∠BPD=∠ADB=90°,
∴有两种情况(如图2所示).
①当△PMB∽△BDA时,有,即,
解得:m=±,
∴点P的坐标为(,)或(,﹣);
②当△BMP∽△BDA时,有,即,
解得:m=±5,
∴点P的坐标为(,5)或(,﹣5).
综上所述:在该抛物线对称轴上存在点P,使△BMP与△BAD相似,点P的坐标为(,)或(,﹣)或(,5)或(,﹣5).
科目:初中数学 来源: 题型:
【题目】如图,已知直线的函数表达式为,且与轴,轴分别交于两点,动点从点开始在线段上以每秒2个单位长度的速度向点移动,同时动点从点开始在线段上以每秒1个单位长度的速度向点移动,设点P、Q移动的时间为秒.
(1)当为何值时,是以PQ为底的等腰三角形?
(2)求出点P、Q的坐标;(用含的式子表达)
(3)当为何值时,的面积是△ABO面积的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AD=8,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则(1)FM=_____;(2)tan∠MDE=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一拱桥所在弧所对的圆心角为120°(即∠AOB=120°),半径为5 m,一艘6 m宽的船装载一集装箱,已知箱顶宽3.2 m,离水面AB高2 m,问此船能过桥洞吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系xOy中有一梯形ABCO,顶点C在x正半轴上,A、B两点在第一象限;且AB∥CO,AO=BC=2,AB=3,OC=5.点P在x轴上,从点(﹣2,0)出发,以每秒1个单位长度的速度沿x轴向正方向运动;同时,过点P作直线l,使直线l和x轴向正方向夹角为30°.设点P运动了t秒,直线l扫过梯形ABCO的面积为S扫.
(1)求A、B两点的坐标;
(2)当t=2秒时,求S扫的值;
(3)求S扫与t的函数关系式,并求出直线l扫过梯形ABCO面积的时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业接到一批产品的生产任务,按要求必须在15天内完成.已知每件产品的售价为65元,工人甲第x天生产的产品数量为y件,y与x满足如下关系:
y=.
(1)工人甲第几天生产的产品数量为80件?
(2)设第x天(0≤x≤15)生产的产品成本为P元/件,P与x的函数图象如图,工人甲第x天创造的利润为W元.
①求P与x的函数关系式;
②求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上.
(1)求的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求与之间的函数关系式,并写出自变量的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,矩形OABC的长OA=,宽OC=1,将△AOC沿AC翻折得△APC.
(1)求∠PCB的度数;
(2)若P,A两点在抛物线y=﹣x2+bx+c上,求b,c的值,并说明点C在此抛物线上;
(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M是x轴上的点,N是y轴上的点,以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com