【题目】如图,已知直线的函数表达式为,且与轴,轴分别交于两点,动点从点开始在线段上以每秒2个单位长度的速度向点移动,同时动点从点开始在线段上以每秒1个单位长度的速度向点移动,设点P、Q移动的时间为秒.
(1)当为何值时,是以PQ为底的等腰三角形?
(2)求出点P、Q的坐标;(用含的式子表达)
(3)当为何值时,的面积是△ABO面积的?
【答案】(1)(2)的坐标分别是,(t,0)(3)t1=2秒或,t2=3秒
【解析】
(1)若△APQ是以PQ为底的等腰三角形,那么AQ=AP时,由解析式可得A(6,0),B(0,8),再利用勾股定理得AB=10,然后可以把AQ和AP用t表示,因此得到关于t的方程,解方程即可;
(2)如图,过Q点分别向x轴,y轴引垂线,垂足分别是M,N,设Q(x,y)由题意可知BQ=2t,AP=t,利用△BQN∽△QMA∽△BOA的对应边成比例就可以用t分别表示x、y,也就求出了点P、Q的坐标;
(3)根据(1)(2)知道,△APQ的面积=AP×QM,△AOB的面积=×6×8=24,因此可以得到关于t的方程,解方程即可解决问题.
(1)当AQ=AP时,是以PQ为底的等腰三角形.
由解析式可得A(6,0),B(0,8),
由勾股定理得,AB=10,
∴AQ=10-2t,AP=t,
即10-2t=t,
∴(秒)
当时,是以PQ为底的等腰三角形;
(2)过Q点分别向x轴,y轴引垂线,垂足分别是M、N,
设Q(x,y),由题意可知BQ=2t,AP=t,
△BQN∽△QMA∽△BOA,
∴,,
∴,,
∴,,
的坐标分别是,(t,0);
(3)∵的面积=,△AOB的面积=,
∴,
解得t1=2,t2=3,
当t1=2秒或t2=3秒时,的面积是△ABO面积的.
科目:初中数学 来源: 题型:
【题目】抛物线的顶点为(1,﹣4),与x轴交于A、B两点,与y轴负半轴交于C(0,﹣3).
(1)求抛物线的解析式;
(2)点P为对称轴右侧抛物线上一点,以BP为斜边作等腰直角三角形,直角顶点M落在对称轴上,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正八边形ABCDEFGH的边长为a,I、J、K、L分别是各自所在边的中点,且四边形IJKL是正方形,则正方形IJKL的边长为________(用含a的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连结DE.
(1)当∠BAD=60°时,求∠CDE的度数;
(2)当点D在BC(点B、C除外)边上运动时,试探究∠BAD与∠CDE的数量关系;
(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其它条件不变,试继续探究∠BAD与∠CDE的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平行四边形ABCD中,经过对角线交点O的直线分别交AB、CD于点E、F.则图中全等的三角形共有( )
A. 4对 B. 5对 C. 6对 D. 8对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017广东省深圳市)如图,抛物线经过点A(﹣1,0),B(4,0),交y轴于点C;
(1)求抛物线的解析式(用一般式表示);
(2)点D为y轴右侧抛物线上一点,是否存在点D使?若存在请直接给出点D坐标;若不存在,请说明理由;
(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图将小球从斜坡的O点抛出,小球的抛出路线可以用二次函数y=ax2+bx刻画,顶点坐标为(4,8),斜坡可以用y=x刻画.
(1)求二次函数解析式;
(2)若小球的落点是A,求点A的坐标;
(3)求小球飞行过程中离坡面的最大高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一元二次方程ax2+bx+c=0两根为x1,x2,x2+x1=﹣,x2.x1=.如果抛物线y=ax2+bx+c经过点(1,2),若abc=4,且a≥b≥c,则|a|+|b|+|c|的最小值为( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+2与x轴相交于A(﹣1,0),B(4,0)两点,与y轴相交于点C.
(1)求抛物线的解析式;
(2)将△ABC绕AB中点M旋转180°,得到△BAD.
①求点D的坐标;
②判断四边形ADBC的形状,并说明理由;
(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com