精英家教网 > 初中数学 > 题目详情

【题目】如图将小球从斜坡的O点抛出,小球的抛出路线可以用二次函数y=ax2+bx刻画,顶点坐标为(4,8),斜坡可以用y=x刻画.

(1)求二次函数解析式;

(2)若小球的落点是A,求点A的坐标;

(3)求小球飞行过程中离坡面的最大高度.

【答案】(1)y=﹣x2+4x(2)(7,)(3)当小球离点O的水平距离为3.5时,小球离斜坡的铅垂高度最大,最大值是

【解析】

(1)由抛物线的顶点坐标为(4,8)可建立过于a,b的二元一次方程组,求出a,b的值即可;

(2)联立两解析式,可求出交点A的坐标;

(3)设小球飞行过程中离坡面距离为z,由(1)中的解析式可得到zx的函数关系,利用函数性质解答即可.

(1)∵抛物线顶点坐标为(4,8),

解得:,

∴二次函数解析式为:y=﹣x2+4x;

(2)联立两解析式可得:

解得:

∴点A的坐标是(7,);

(3)设小球离斜坡的铅垂高度为z,则z=﹣x2+4x﹣x=﹣(x﹣3.5)2+

故当小球离点O的水平距离为3.5时,小球离斜坡的铅垂高度最大,最大值是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知反比例函数y=(m为常数)的图象经过点A(﹣1,6).

(1)求m的值;

(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】蘑菇石是我国著名的自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达蘑菇石”A点,蘑菇石”A点到水平面BC的垂直距离为1890m.如图,DEBCBD=1800mDBC=80°,求斜坡AE的长度.(结果精确到0.1m,可参考数据sin29°≈0.4848sin80°≈0.9848cos29°≈0.8746cos80°≈0.1736

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线的函数表达式为,且轴,轴分别交于两点,动点点开始在线段上以每秒2个单位长度的速度向点移动,同时动点点开始在线段上以每秒1个单位长度的速度向点移动,设点P、Q移动的时间为秒.

(1)为何值时,是以PQ为底的等腰三角形?

(2)求出点P、Q的坐标;(用含的式子表达)

(3)为何值时,的面积是ABO面积的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC绕点C顺时针旋转90°得到EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是(  )

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当月内销售单价不变,则月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:

(1)设小赵每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润.

(2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点OAB中点,点P为直线BC上的动点(不与点B、点C重合),连接OCOP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ

(1)如图1,当点P在线段BC上时,试猜想写出线段CPBQ的数量关系,并证明你的猜想;

(2)如图2,当点PCB延长线上时,(1)中结论是否成立?(直接写“成立”或“不成立”即可,不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AD=8,点E是对角线AC上一点,连接DE,过点EEFED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点FAB的中点,则(1)FM_____;(2)tan∠MDE_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于AB两点,其中A点的坐标为(3,4)B点在轴.

(1)的值及这个二次函数的关系式;

(2)P为线段AB上的一个动点(点PAB不重合),过P轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求之间的函数关系式,并写出自变量的取值范围;

(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案