精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于AB两点,其中A点的坐标为(3,4)B点在轴.

(1)的值及这个二次函数的关系式;

(2)P为线段AB上的一个动点(点PAB不重合),过P轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求之间的函数关系式,并写出自变量的取值范围;

(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.

【答案】1;(2;(3)存在,P点坐标为(2,3).

【解析】

试题(1)、将点A代入直线解析式求出m的值,将二次函数设出顶点式,然后求出函数解析式;(2)、分别得出点P和点E的纵坐标,然后将两点的纵坐标做差得出hx的函数关系式;(3)、根据平行四边形性质可得:PE=DC,根据点D在直线y=x+1上得出点D的坐标,从而得出方程求出x的值,得出点P的坐标.

试题解析:(1)A(3,4)在直线y=x+m上,∴4=3+m. ∴m=1.

设所求二次函数的关系式为y=a(x-1)2. ∵A(3,4)在二次函数y=a(x-1)2的图象上,

∴4=a(3-1)2, ∴a=1. ∴所求二次函数的关系式为y=(x-1)2.y=x2-2x+1.

(2)、设PE两点的纵坐标分别为yPyE∴PE=h=yP-yE=(x+1)-(x2-2x+1)=-x2+3x.

h=-x2+3x(0x3).

(3)、存在.要使四边形DCEP是平行四边形,必需有PE=DC.∵D在直线y=x+1,

D的坐标为(1,2),∴-x2+3x=2.x2-3x+2=0. 解得:x1=2x2=1(不合题意,舍去)

P点的坐标为(2,3)时,四边形DCEP是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图将小球从斜坡的O点抛出,小球的抛出路线可以用二次函数y=ax2+bx刻画,顶点坐标为(4,8),斜坡可以用y=x刻画.

(1)求二次函数解析式;

(2)若小球的落点是A,求点A的坐标;

(3)求小球飞行过程中离坡面的最大高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家规定中小学生每天在校体育活动时间不低于1小时.为此,某市就你每天在校体育活动时间是多少的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:

A组:B组:

C组:D组:

请根据上述信息解答下列问题:

(1)C组的人数是

(2)本次调查数据的中位数落在组内;

(3)若该辖区约有24 000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+2x轴相交于A(﹣1,0),B(4,0)两点,与y轴相交于点C.

(1)求抛物线的解析式;

(2)将△ABCAB中点M旋转180°,得到△BAD.

①求点D的坐标;

②判断四边形ADBC的形状,并说明理由;

(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中:①ac>0;②a+b+c<0;③4a﹣2b+c<0;④2a+b<0;⑤4ac﹣b2<4a;⑥a+b>0中,其中正确的个数为(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为( )

A. 4 B. ﹣4 C. ﹣6 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:abc0 b24ac0 4b+c0 若B(﹣y1)、Cy2)为函数图象上的两点,则y1y2当﹣3≤x≤1时,y≥0,

其中正确的结论是(填写代表正确结论的序号)__________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小清为班级办黑板报时遇到一个难题,在版面设计过程中需要将一个半圆三等分,小华帮他设计了一个尺规作图的方法.

小华的作法如下:

(1)作AB的垂直平分线CDAB于点O

(2)分别,以AB为圆心,以AO(或BO)的长为半径画弧,分别交半圆于点MN

(3)连接OMON即可

请根据该同学的作图方法完成以下推理:

∵半圆AB

   是直径.

CD是线段AB的垂直平分线

OAOB(依据:   

OAOM   

∴△OAM为等边三角形(依据:   

∴∠AOM=60°(依据:   

同理可得∠BON=60°

AOM=∠BON=∠MON=60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A21),B1n)两点.

(1)试确定上述反比例函数和一次函数的表达式;

(2)求△AOB的面积.

查看答案和解析>>

同步练习册答案