精英家教网 > 初中数学 > 题目详情
(2011•清流县质检)星期天,小明在解答下列题目时卡壳了.
题目1:如图①,在△ABC中,AC=BC,∠ACB=90°,O为△ABC内的一点,OC=1,OA=
3
,OB=
5
.求∠AOC的度数.
小明去请教小颖正在解答下列题目.
题目2:如图②,点O是等边三角形ABC内的一点,将△BCO绕C顺时针方向旋转60°得到△ADC,连接OD.
(1)试判断△COD的形状,并说明理由;
(2)当∠COB=150°时,试判断△AOD的形状,并写出OA、OB、OC三者之间的等量关系式.
小颖说:“等等,等我做完了,我们一起来看.”小明看完,小颖做完后高兴地说:“哈哈,太好了,我会了.”聪明的同学,你能先解答完题目2,再根据解答所得到的启迪来完成题目1吗?写出你的解答过程.
分析:题目2:(1)根据有一个角为60°的等腰三角形是等边三角形直接进行判定即可;
(2)根据旋转的性质,得到△BOC≌△ADC,从而求出∠ADC的度数,OB=AD,再根据等边三角形的性质得∠ODC=60°,OC=OD,即∠ADO=90°,即可以判断△AOD的形状,及OA、OB、OC三者之间的等量关系式.
题目1:根据题目2的方法,将△BCO绕C顺时针方向旋转90°得到△ADC,连接OD,可得到△BOC≌△ADC,即∠OC=CD=1,OB=AD=
5
,再利用等腰直角三角形的性质得出∠COD的度数;
最后利用勾股定理的逆定理证明△AOD是直角三角形,易得∠AOC的度数.
解答:解:(1)证明:∵CO=CD,∠OCD=60°,
∴△COD是等边三角形;
(2)解:当∠BOC=150°时,△AOD是直角三角形.
∵△BCO绕C顺时针方向旋转60°得到△ADC,
∴△BOC≌△ADC,
∴∠ADC=∠BOC=150°,OB=AD,
又∵△COD是等边三角形,
∴∠ODC=60°,OC=OD
∴∠ADO=90°,
即△AOD是直角三角形;
∴OA2=OD2+AD2
∴OA2=OC2+AO2
解题目1:
解:将△BCO绕C顺时针方向旋转90°得到△ADC,连接OD,如图,
∴△BOC≌△ADC,
∴OC=CD=1,OB=AD=
5

∵∠OCD=90°且OC=CD=1,
∴∠COD=45°,OD=
2

又∵OA=
3

∴AD2=OA2+OD2
∴∠AOD=90°
∴∠AOC=∠COD+∠AOD=135°.
点评:本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质等知识.注意此题有一定的开放性,要找到变化中的不变量才能有效解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•清流县质检)(1)计算:(
3
+1)(
3
-1)-|1-tan60°|+(x10+1)0
(2)解不等式组
3(x+1)>5x+3①
x-1
2
2x-1
3
,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源:2011年山东省潍坊市青州市中考数学模拟试卷(解析版) 题型:填空题

(2011•清流县质检)如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表,则an=    (用含n的代数式表示).
所剪次数1234n
正三角形个数471013an

查看答案和解析>>

科目:初中数学 来源:2009年浙江省杭州市萧山区中考模拟数学试卷(新街镇中 王国文)(解析版) 题型:选择题

(2011•清流县质检)下列计算正确的是( )
A.(2ab)2=2a2b2
B.(a+b)2=a2+b2
C.a5+b5=2a10
D.(a2+a)÷a=a+1

查看答案和解析>>

科目:初中数学 来源:2009年广东省湛江市中考数学模拟试卷(解析版) 题型:选择题

(2011•清流县质检)平面中两个圆相切,两圆的圆心距为7cm,以下属于两圆的半径大小数值中,不可能的是( )
A.2cm和5cm
B.2cm和9cm
C.7cm和14cm
D.3cm和7cm

查看答案和解析>>

同步练习册答案