【题目】如图,在平面直角坐标系中,O为坐标原点,平行四边形ABOC的对角线交于点M,双曲线y= (x<0)经过点B、M.若平行四边形ABOC的面积为12,则k= .
【答案】﹣4
【解析】解:设M的坐标是(m,n),则mn=k, ∵平行四边形ABOC中M是OA的中点,
∴A的坐标是:(2m,2n),B的纵坐标是2n,
把y=2n代入y= 得:x= ,即B的横坐标是: .
∴AB=OC= ﹣2m,OC边上的高是2n,
∴( ﹣2m)2n=12,
即k﹣4mn=12,
∴k﹣4k=12,
解得:k=﹣4.
所以答案是﹣4.
【考点精析】认真审题,首先需要了解比例系数k的几何意义(几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积),还要掌握平行四边形的性质(平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】老师在黑板上出了一道解方程的题,小虎马上举手,要求到黑板上去做,他是这样做的:
5(3x-1)=2(4x+2)-1①,
15x-5=8x+4-1②,
15x-8x=4-1+5③
7x④,
x=⑤
老师说:小虎解一元一次方程的一般步骤都知道,但没有掌握好,因此解题出现了错误,请指出他的错步及错误原因: ,方程的正确的解是x= .
然后,你自己细心的解下面的方程:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在锐角三角形ABC中,BD⊥AC于D,CE⊥AB于E,且S△ADE= S四边形BEDC , 则∠A=( )
A.75°
B.60°
C.45°
D.30°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,过点C作CD⊥CB交∠CBA的外角平分线于点D,连接AD,过点C作∠BCE=∠BAD,交AB的延长线于点E.若CD=3,则CE=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上,老师出了一道题:化简
[8(a+b)5-4(a+b)4+(-a-b)3]÷[2(a+b)3].
小明同学马上举手,下面是小明的解题过程:
[8(a+b)5-4(a+b)4+(-a-b)3]÷[2(a+b)3]
=[8(a+b)5-4(a+b)4+(a+b)3]÷8(a+b)3
=(a+b)2- (a+b)+ .
小亮也举起了手,说小明的解题过程不对,并指了出来.老师肯定了小亮的回答.你知道小明错在哪儿吗?请指出来,并写出正确解答.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将含30°角的三角板ABC如图放置,使其三个顶点分别落在三条平行直线上,其中∠ACB=90°,当∠1=60°时,图中等于30°的角的个数是()
A. 6个 B. 5个 C. 4个 D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着互联网、移动终端的迅速发展,数字化阅读越来越普及,公交上的“低头族”越来越多.某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(如图1),并将调查结果绘制成图2和图3所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:
(1)求出本次接受调查的总人数,并将条形统计图补充完整;
(2)表示观点B的扇形的圆心角度数为度;
(3)2016年底慈溪人口总数约为200万(含外来务工人员),请根据图中信息,估计慈溪市民认同观点D的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数轴上,点A表示数a,点B表示数b,在学习绝对值时,我们知道了绝对值的几何含义:
数轴上A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.如:|a+6|表示数a和﹣6在数轴上对应的两点之间的距离.|a﹣1|表示数a和1在数轴上对应的两点之间的距离.
(1)若a满足|a+6|+|a+4|+|a﹣1|的值最小,b与3a互为相反数,直接写出点A对应的数 ,点B对应的数 .
(2)在(1)的条件下,已知点E从点A出发以1单位/秒的速度向右运动,同时点F从点B出发以2单位/秒的速度向右运动,FO的中点为点P,则下列结论:①PO+AE的值不变;②PO﹣AE的值不变,其中有且只有一个是正确的,选出来并求其值.
(3)在(1)的条件下,已知动点M从A点出发以1单位/秒的速度向左运动,动点N从B点出发以3单位/秒的速度向左运动,动点T从原点的位置出发以x单位/秒的速度向左运动,三个动点同时出发,若运动过程中正好先后出现两次TM=TN的情况,且两次间隔的时间为4秒,求满足条件的x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com