精英家教网 > 初中数学 > 题目详情

【题目】在锐角三角形ABC中,BD⊥AC于D,CE⊥AB于E,且SADE= S四边形BEDC , 则∠A=(
A.75°
B.60°
C.45°
D.30°

【答案】B
【解析】解:如图,连接DE.
∵BD⊥AC于D,CE⊥AB于E,
∴∠AEC=∠ADB=90°,
∵∠A=∠A,
∴△ABD∽△ACE,

,∵∠A=∠A,
∴△AED∽△ACB,
∵SADE= S四边形BEDC
∴SADE:SABC=1:4
∴( 2=
∴AC=2AE,
∴sin∠ACE=
∴∠ACE=30°,
∴∠A=90°﹣∠ACE=60°,
故选B.
【考点精析】关于本题考查的相似三角形的判定与性质,需要了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一次消防演习中,消防员架起一架25米长的云梯,如图斜靠在一面墙上,梯子底端离墙7米.

1)求这个梯子的顶端距地面有多高?

2)如果消防员接到命令,要求梯子的顶端下降4米(云梯长度不变),那么云梯的底部在水平方向应滑动多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点.若GH的长为10cm,求△PAB的周长为(
A.5cm
B.10cm
C.20cm
D.15cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面内的两条直线有相交和平行两种位置关系.

1)如图1,若ABCD,点PABCD内部,B=50°D=30°,求BPD

2)如图2,将点P移到ABCD外部,则BPDBD之间有何数量关系?(不需证明)

3)如图3,写出BPDBDBQD之间的数量关系?请证明你的结论.

4)如图4,求出A+B+C+D+E+F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有两条边长的比值为 的直角三角形叫“潜力三角形”.如图,在△ABC中,∠B=90°,D是AB的中点,E是CD的中点,DF∥AE交BC于点F.

(1)设“潜力三角形”较短直角边长为a,斜边长为c,请你直接写出 的值为
(2)若∠AED=∠DCB,求证:△BDF是“潜力三角形”;
(3)若△BDF是“潜力三角形”,且BF=1,求线段AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O为矩形ABCD对角线的交点,过点D作DE∥AC,过点C作CE∥BD,且DE、CE相交于E点.
(1)求证:四边形OECD是菱形;
(2)若AB=4,AC=8,求菱形OCED的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,平行四边形ABOC的对角线交于点M,双曲线y= (x<0)经过点B、M.若平行四边形ABOC的面积为12,则k=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是

查看答案和解析>>

同步练习册答案