分析 由一次函数的单调性即可得知点(1,3)、(4,6)在一次函数y=kx+b的图象上或点(1,6)、(4,3)在一次函数y=kx+b的图象上,根据点的坐标利用待定系数法即可求出一次函数的解析式,此题得解.
解答 解:∵对于一次函数y=kx+b,当1≤x≤4时,3≤y≤6,
∴点(1,3)、(4,6)在一次函数y=kx+b的图象上或点(1,6)、(4,3)在一次函数y=kx+b的图象上.
当点(1,3)、(4,6)在一次函数y=kx+b的图象上时,
$\left\{\begin{array}{l}{k+b=3}\\{4k+b=6}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=1}\\{b=2}\end{array}\right.$,
∴此时一次函数的解析式为y=x+2;
当(1,6)、(4,3)在一次函数y=kx+b的图象上时,
$\left\{\begin{array}{l}{k+b=6}\\{4k+b=3}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=-1}\\{b=7}\end{array}\right.$,
此时一次函数的解析式为y=-x+7.
故答案为:y=x+2或y=-x+7.
点评 本题考查了一次函数的性质以及待定系数法求一次函数解析式,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com