精英家教网 > 初中数学 > 题目详情

【题目】经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为

【答案】113°或92°
【解析】解:∵△BCD∽△BAC, ∴∠BCD=∠A=46°,
∵△ACD是等腰三角形,∵∠ADC>∠BCD,
∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC= (180°﹣46°)=67°,
∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,
∴∠ACB=46°+46°=92°,
故答案为113°或92°.

由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】
(1)如图1,Rt△ABC中,∠B=90°,AB=2BC,现以C为圆心、CB长为半径画弧交边AC于D,再以A为圆心、AD为半径画弧交边AB于E.求证: = .(这个比值 叫做AE与AB的黄金比.)
(2)如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图2中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC. (注:直尺没有刻度!作图不要求写作法,但要求保留作图痕迹,并对作图中涉及到的点用字母进行标注)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为(
A.﹣13
B.12
C.14
D.15

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:

运动项目

频数(人数)

羽毛球

30

篮球

a

乒乓球

36

排球

b

足球

12


请根据以上图表信息解答下列问题:
(1)频数分布表中的a= , b=
(2)在扇形统计图中,“排球”所在的扇形的圆心角为度;
(3)全校有多少名学生选择参加乒乓球运动?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.
(1)求证:DE=DF,DE⊥DF;
(2)连接EF,若AC=10,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:

使用次数

0

1

2

3

4

5(含5次以上)

累计车费

0

0.5

0.9

a

b

1.5

同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:

使用次数

0

1

2

3

4

5

人数

5

15

10

30

25

15

(Ⅰ)写出a,b的值;
(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列图形中,既是轴对称图形,又是中心对称图形的是(
A.直角三角形
B.正五边形
C.正方形
D.平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不等式组 的最小整数解是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案