精英家教网 > 初中数学 > 题目详情

【题目】
(1)如图1,Rt△ABC中,∠B=90°,AB=2BC,现以C为圆心、CB长为半径画弧交边AC于D,再以A为圆心、AD为半径画弧交边AB于E.求证: = .(这个比值 叫做AE与AB的黄金比.)
(2)如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图2中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC. (注:直尺没有刻度!作图不要求写作法,但要求保留作图痕迹,并对作图中涉及到的点用字母进行标注)

【答案】
(1)证明:∵Rt△ABC中,∠B=90°,AB=2BC,

∴设AB=2x,BC=x,则AC= x,

∴AD=AE=( ﹣1)x,

= =


(2)解:底与腰之比均为黄金比的等腰三角形,如图:

①过点B作EB⊥AB,作AB的垂直平分线交AB于点D,使BE=BD,

②连接AE,以E为圆心,BE长为半径画弧,使EF=BE,

③以B为圆心AF长为半径画弧,以A为圆心,AB长为半径画弧,交点为C,

则△ABC即为所求.


【解析】(1)利用位置数表示出AB,AC,BC的长,进而得出AE的长,进而得出答案;(2)根据底与腰之比均为黄金比的等腰三角形,画图即可.
【考点精析】解答此题的关键在于理解黄金分割的相关知识,掌握把线段AB分成两条线段AC,BC(AC>BC),并且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC=0.618AB

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】

(1)阅读材料:
教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为 , 故沿虚线AB剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图
(2)类比解决:
如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE剪开,使剪成的若干块能够拼成一个新的正三角形.
拼成的正三角形边长为
(3)在图2中用虚线画出一种剪拼示意图.
(4)灵活运用:
如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发xs时,△PAQ的面积为ycm2 , y与x的函数图象如图②,则线段EF所在的直线对应的函数关系式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为 ,OP=1,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,一直线a向下平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转60°后所得直线经过点B(﹣ ,0),则直线a的函数关系式为(
A.y=﹣ x
B.y=﹣ x
C.y=﹣ x+6
D.y=﹣ x+6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.
(1)该运动员去年的比赛中共投中多少个3分球?
(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一等腰梯形两组对边中点连线段的平方和为8,则这个等腰梯形的对角线长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为

查看答案和解析>>

同步练习册答案