【题目】如图所示,某农户想建造一花圃,用来种植两种不同的花卉,以供应城镇市场需要,现用长为36m的篱笆,一面砌墙(墙的最大可使用长度l=13m),围成中间隔有一道篱笆的长方形花圃,设花圃宽AB为x,面积为S.
(1)求S与x的函数关系式.并指出它是一次函数,还是二次函数?
(2)若要围成面积为96m2的花圃,求宽AB的长度.
(3)花圃的面积能达到108m2吗?若能,请求出AB的长度,若不能请说明理由.
【答案】(1)S=(36-3x)x=-3x2+36x;
(2)AB的长为8m;
(3)花圃的面积不能达到108m2.
【解析】试题分析:(1)等量关系为:(篱笆长-3AB)×AB=S,即可得出答案;
(2)等量关系为:(篱笆长-3AB)×AB=96,把相关数值代入求得合适的解即可;
(3)把(1)中用代数式表示的面积整理为a(x-h)2+b的形式可得最大的面积.
试题解析::(1)设花圃宽AB为x,面积为S.
则S=(36-3x)x=-3x2+36x;
(2)设AB的长是x米.
(36-3x)x=96,
解得x1=4,x2=8,
当x=4时,长方形花圃的长为36-3x=24,又墙的最大可用长度a是13m,故舍去;
当x=8时,长方形花圃的长为24-3x=12,符合题意;
∴AB的长为8m.
(3)花圃的面积为S=(36-3x)x=-3(x-6)2+108,
∴当AB长为6m,宽为16m时,有最大面积,为108平方米.
又∵当AB=6m时,长方形花圃的长为36-3×6=18m,又墙的最大可用长度a是13m,故舍去;
故花圃的面积不能达到108m2.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).
(1)求a,b的值;
(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图题:如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).
(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;
(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;
(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后D的对应点D2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016·杭州中考)如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则( )
A. DE=EB B. DE=EB C. DE=DO D. DE=OB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:
①该蔬菜的销售价(单位:元/千克)与时间(单位:月份)满足关系: ;
②该蔬菜的平均成本(单位:元/千克)与时间(单位:月份)满足二次函数关系.已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.
(1)求该二次函数的解析式;
(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润(单位:元/千克)最大?最大平均利润是多少?(注:平均利润销售价平均成本)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com