【题目】已知,如图,△ABC中,∠BAC=60°,AD平分∠BAC,AC=AB+BD,求∠B的度数.
【答案】80°
【解析】试题分析: 在AC上截取AE=AB,根据角平分线的定义可得∠BAD=∠CAD,然后利用“边角边”证明△ABD和△AED全等,根据全等三角形对应边相等可得BD=DE,全等三角形对应角相等可得∠B=∠AED,再求出CE=BD,从而得到CE=DE,根据等边对等角可得∠C=∠CDE,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AED=2∠C,然后根据三角形的内角和定理列方程求出∠C,即可得解.
试题解析:如图,在AC上截取AE=AB.
∵AD平分∠BAC,
∴∠BAD=∠CAD,
在△ABD和△AED中, ,
∴△ABD≌△AED(SAS),
∴BD=DE,∠B=∠AED,
∵AC=AE+CE,AC=AB+BD,
∴CE=BD,
∴CE=DE,
∴∠C=∠CDE,
即∠B=2∠C,
在△ABC中,∠BAC+∠B+∠C=180°,
∴60°+2∠C+∠C=180°,
解得∠C=40°,
∴∠B=2×40°=80°.
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请作出△ABC关于y轴对称的△A1B1C1;
(3)写出点B1的坐标;
(4)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.
(1)观察图形填写下表:
链条节数(节) | 2 | 3 | 4 |
链条长度(cm) |
|
|
|
(2)如果x节链条的总长度是y,求y与x之间的关系式;
(3)如果一辆某种型号自行车的链条(安装前)由80节这样的链条组成,那么这根链条完成链接(安装到自行车上)后,总长度是多少cm?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知下表:
x | 0 | 1 | 2 |
ax2 | 1 | ||
ax2+bx+c | 3 | 3 |
(1)求a、b、c的值,并在表内空格处填入正确的数;
(2)请你根据上面的结果判断:
①是否存在实数x,使二次三项式ax2+bx+c的值为0?若存在,求出这个实数值;若不存在,请说明理由.
②画出函数y=ax2+bx+c的图象示意图,由图象确定,当x取什么实数时,ax2+ bx+c>0?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
关于,的二元一次方程有一组整数解则方程的全部整数解可表示为(为整数).
问题:求方程的所有正整数解.
小明参考阅读材料,解决该问题如下:
解:该方程一组整数解为则全部整数解可表示为(为整数).
因为解得.因为为整数,所以0或.
所以该方程的正整数解为和.
请你参考小明的解题方法, 完成下面的问题:
(1)方程的全部正整数解为______________;
(2)方程的全部整数解表示为: (为整数);
(3)方程的正整数解有多少组? 请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王老师家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.
(1)木地板和地砖分别需要多少平方米?
(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线CD与EF相交于点O,∠COE=60°,将一直角三角尺AOB的直角顶点与O重合,OA平分∠COE.
(1)求∠BOD的度数;
(2)将三角尺AOB以每秒3°的速度绕点O顺时针旋转,同时直线EF也以每秒9°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤40).
①当t为何值时,直线EF平分∠AOB;
②若直线EF平分∠BOD,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,求正比例函数和一次函数的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com