精英家教网 > 初中数学 > 题目详情

如图,在⊙O中,半径OC⊥弦AB于点D,AB=数学公式,AO=4,则∠O=________.

60°
分析:由半径OC与弦AB垂直,利用垂径定理得到D为AB的中点,由AB的长求出AD的长,在直角三角形AOD中,利用锐角三角函数定义求出sinO的值,利用特殊角的三角函数值即可求出∠O的度数.
解答:∵半径OC⊥弦AB,
∴D为AB的中点,又AB=4
∴AD=AB=2
在Rt△AOD中,AO=4,AD=2
∴sinO==
又∵∠O为锐角,
∴∠O=60°.
故答案为:60°.
点评:此题考查了垂径定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握垂径定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=
5

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•平凉)如图,在⊙O中,半径OC垂直于弦AB,垂足为点E.
(1)若OC=5,AB=8,求tan∠BAC;
(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断直线AD与⊙O的位置关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)如图,在⊙O中,半径OA⊥弦BC,∠AOB=50°,则圆周角∠ADC=
25°
25°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,半径OA⊥弦BC,∠AOB=60°,则圆周角∠ADC=
30°
30°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,半径OA⊥OB,弦AC交OB于点D,E是OB延长线上一点,如果∠OAD=30°,ED=CE.
求证:EC是⊙O的切线.

查看答案和解析>>

同步练习册答案