精英家教网 > 初中数学 > 题目详情

如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    3
C
分析:根据AB=AC,得∠B=∠C,再由BD=CE,得△ABD≌△ACE,进一步推得△ABE≌△ACD
解答:∵AB=AC,
∴∠B=∠C,
又BD=CE,
∴△ABD≌△ACE(SAS),
∴AD=AE(全等三角形的对应边相等),
∴∠AEB=∠ADC,
∴△ABE≌△ACD(AAS).
故选C.
点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、如图在△ABC中,∠ACB=90°,CD是边AB上的高.那么图中与∠A相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图在△ABC中,∠ABC=50°,∠ACB=75°,点O是内心,则∠BOC的度数为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG平分∠CDE,DC=AE,
求证:CG=EG.
证明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB边上的中线
∴E是AB的中点
∴DE=
1
2
AB
1
2
AB
(直角三角形斜边上的中线等于斜边的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三线合一
等腰三角形三线合一

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的两点,则图中阴影部分的面积是
20
20

查看答案和解析>>

同步练习册答案