分析 (1)把(x-m)看作一个整体,令y=0,利用根的判别式进行判断即可;
(2)令y=0,利用因式分解法解方程求出x1=m,x2=m+1,根据x12+x22=25,代入得到关于m的方程,解方程即可求解;
(3)根据两点间的距离公式求出AB,再把抛物线转化为顶点式形式求出顶点坐标,再利用三角形的面积公式列式进行计算即可得解.
解答 (1)证明:令y=0,a(x-m)2-a(x-m)=0,
△=(-a)2-4a×0=a2,
∵a≠0,
∴a2>0,
∴不论a与m为何值,该函数的图象与x轴总有两个公共点;
(2)解:y=0,则a(x-m)2-a(x-m)=a(x-m)(x-m-1)=0,
解得x1=m,x2=m+1,
∵x12+x22=25,
∴m2+(m+1)2=25,
解得m1=-4,m2=3.
故m的值为-4或3;
(3)解:∵x1=m,x2=m+1,
∴AB=(m+1)-m=1,
y=a(x-m)2-a(x-m)=a(x-m-$\frac{1}{2}$)2-$\frac{a}{4}$,
△ABC的面积=$\frac{1}{2}$×1×|-$\frac{a}{4}$|=1,
解得a=±8.
故a的值是±8.
点评 本题考查了二次函数综合题,主要利用了根的判别式,三角形的面积,把(x-m)看作一个整体求解更加简便.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com